11 research outputs found

    Heterotrophy of oceanic particulate organic matter elevates net ecosystem calcification

    Get PDF
    Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(16), (2019): 9851-9860, doi:10.1029/2019GL083726.Coral reef calcification is expected to decline due to climate change stressors such as ocean acidification and warming. Projections of future coral reef health are based on our understanding of the environmental drivers that affect calcification and dissolution. One such driver that may impact coral reef health is heterotrophy of oceanic‐sourced particulate organic matter, but its link to calcification has not been directly investigated in the field. In this study, we estimated net ecosystem calcification and oceanic particulate organic carbon (POCoc) uptake across the Kāne'ohe Bay barrier reef in Hawai'i. We show that higher rates of POCoc uptake correspond to greater net ecosystem calcification rates, even under low aragonite saturation states (Ωar). Hence, reductions in offshore productivity may negatively impact coral reefs by decreasing the food supply required to sustain calcification. Alternatively, coral reefs that receive ample inputs of POCoc may maintain higher calcification rates, despite a global decline in Ωar.Data needed for calculations are available in the supporting information. Additional data can be provided upon request directly from the corresponding author or accessed by links provided in the supporting information. The authors declare no competing financial interests. We thank Texas Sea Grant for providing partial funding for this project to A. Kealoha through the Grants‐In‐Aid of Graduate Research Program. We also thank the NOAA Nancy Foster Scholarship for PhD program funding to A. Kealoha and Texas A&M University for funds awarded to Shamberger that supported this work. This research was also supported by funding from National Science Foundation Grant OCE‐1538628 to RappĂ©. The Hawaii Institute of Marine Biology (particularly the RappĂ© Lab and Jason Jones), NOAA's Coral Reef Ecosystem Program, Connie Previti, Serena Smith, and Chris Maupin were instrumental in sample collection and data analysis.2020-02-2

    Photometry of the Didymos System across the DART Impact Apparition

    Get PDF
    On 2022 September 26, the Double Asteroid Redirection Test (DART) spacecraft impacted Dimorphos, the satellite of binary near-Earth asteroid (65803) Didymos. This demonstrated the efficacy of a kinetic impactor for planetary defense by changing the orbital period of Dimorphos by 33 minutes. Measuring the period change relied heavily on a coordinated campaign of lightcurve photometry designed to detect mutual events (occultations and eclipses) as a direct probe of the satellite’s orbital period. A total of 28 telescopes contributed 224 individual lightcurves during the impact apparition from 2022 July to 2023 February. We focus here on decomposable lightcurves, i.e., those from which mutual events could be extracted. We describe our process of lightcurve decomposition and use that to release the full data set for future analysis. We leverage these data to place constraints on the postimpact evolution of ejecta. The measured depths of mutual events relative to models showed that the ejecta became optically thin within the first ∌1 day after impact and then faded with a decay time of about 25 days. The bulk magnitude of the system showed that ejecta no longer contributed measurable brightness enhancement after about 20 days postimpact. This bulk photometric behavior was not well represented by an HG photometric model. An HG 1 G 2 model did fit the data well across a wide range of phase angles. Lastly, we note the presence of an ejecta tail through at least 2023 March. Its persistence implied ongoing escape of ejecta from the system many months after DART impact

    Antibacterial Envelope to Prevent Cardiac Implantable Device Infection

    Full text link
    BACKGROUND Infections after placement of cardiac implantable electronic devices (CIEDs) are associated with substantial morbidity and mortality. There is limited evidence on prophylactic strategies, other than the use of preoperative antibiotics, to prevent such infections. METHODS We conducted a randomized, controlled clinical trial to assess the safety and efficacy of an absorbable, antibiotic-eluting envelope in reducing the incidence of infection associated with CIED implantations. Patients who were undergoing a CIED pocket revision, generator replacement, or system upgrade or an initial implantation of a cardiac resynchronization therapy defibrillator were randomly assigned, in a 1:1 ratio, to receive the envelope or not. Standard-of-care strategies to prevent infection were used in all patients. The primary end point was infection resulting in system extraction or revision, long-term antibiotic therapy with infection recurrence, or death, within 12 months after the CIED implantation procedure. The secondary end point for safety was procedure-related or system-related complications within 12 months. RESULTS A total of 6983 patients underwent randomization: 3495 to the envelope group and 3488 to the control group. The primary end point occurred in 25 patients in the envelope group and 42 patients in the control group (12-month Kaplan-Meier estimated event rate, 0.7% and 1.2%, respectively; hazard ratio, 0.60; 95% confidence interval [CI], 0.36 to 0.98; P = 0.04). The safety end point occurred in 201 patients in the envelope group and 236 patients in the control group (12-month Kaplan-Meier estimated event rate, 6.0% and 6.9%, respectively; hazard ratio, 0.87; 95% CI, 0.72 to 1.06; P<0.001 for noninferiority). The mean (±SD) duration of follow-up was 20.7±8.5 months. Major CIED-related infections through the entire follow-up period occurred in 32 patients in the envelope group and 51 patients in the control group (hazard ratio, 0.63; 95% CI, 0.40 to 0.98). CONCLUSIONS Adjunctive use of an antibacterial envelope resulted in a significantly lower incidence of major CIED infections than standard-of-care infection-prevention strategies alone, without a higher incidence of complications. (Funded by Medtronic; WRAP-IT ClinicalTrials.gov number, NCT02277990.)

    Antibacterial Envelope to Prevent Cardiac Implantable Device Infection

    No full text
    Background Infections after placement of cardiac implantable electronic devices (CIEDs) are associated with substantial morbidity and mortality. There is limited evidence on prophylactic strategies, other than the use of preoperative antibiotics, to prevent such infections. Methods We conducted a randomized, controlled clinical trial to assess the safety and efficacy of an absorbable, antibiotic-eluting envelope in reducing the incidence of infection associated with CIED implantations. Patients who were undergoing a CIED pocket revision, generator replacement, or system upgrade or an initial implantation of a cardiac resynchronization therapy defibrillator were randomly assigned, in a 1:1 ratio, to receive the envelope or not. Standard-of-care strategies to prevent infection were used in all patients. The primary end point was infection resulting in system extraction or revision, long-term antibiotic therapy with infection recurrence, or death, within 12 months after the CIED implantation procedure. The secondary end point for safety was procedure-related or system-related complications within 12 months. Results A total of 6983 patients underwent randomization: 3495 to the envelope group and 3488 to the control group. The primary end point occurred in 25 patients in the envelope group and 42 patients in the control group (12-month Kaplan-Meier estimated event rate, 0.7% and 1.2%, respectively; hazard ratio, 0.60; 95% confidence interval [CI], 0.36 to 0.98; P=0.04). The safety end point occurred in 201 patients in the envelope group and 236 patients in the control group (12-month Kaplan-Meier estimated event rate, 6.0% and 6.9%, respectively; hazard ratio, 0.87; 95% CI, 0.72 to 1.06; P&lt;0.001 for noninferiority). The mean (+/- SD) duration of follow-up was 20.7 +/- 8.5 months. Major CIED-related infections through the entire follow-up period occurred in 32 patients in the envelope group and 51 patients in the control group (hazard ratio, 0.63; 95% CI, 0.40 to 0.98). Conclusions Adjunctive use of an antibacterial envelope resulted in a significantly lower incidence of major CIED infections than standard-of-care infection-prevention strategies alone, without a higher incidence of complications

    Finite-State Text Processing

    No full text

    Disinfestation of soil by heat, flooding and fumigation

    No full text
    corecore