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Abstract Coral reef calcification is expected to decline due to climate change stressors such as ocean
acidification and warming. Projections of future coral reef health are based on our understanding of the
environmental drivers that affect calcification and dissolution. One such driver that may impact coral reef
health is heterotrophy of oceanic‐sourced particulate organic matter, but its link to calcification has not been
directly investigated in the field. In this study, we estimated net ecosystem calcification and oceanic
particulate organic carbon (POCoc) uptake across the Kāne'ohe Bay barrier reef in Hawai'i. We show that
higher rates of POCoc uptake correspond to greater net ecosystem calcification rates, even under low
aragonite saturation states (Ωar). Hence, reductions in offshore productivity may negatively impact coral
reefs by decreasing the food supply required to sustain calcification. Alternatively, coral reefs that receive
ample inputs of POCoc may maintain higher calcification rates, despite a global decline in Ωar.

Plain Language Summary Coral reefs are threatened by climate change stressors including
ocean acidification and ocean warming. One way to measure and monitor coral reef health is to estimate
coral reef calcification, which is influenced by several environmental factors including light, temperature,
pH, and nutrient availability. By understanding the effects of these factors on calcification, we can better
predict how corals will respond to climate change. One potentially important factor for calcification that has
not been investigated in the field is coral reef ecosystem feeding on particulate organic matter supplied
from offshore (i.e., oceanic particulate organic matter). In this study, we estimated net ecosystem
calcification and oceanic particulate organic carbon (POC) uptake across the Kāne'ohe Bay barrier reef in
Hawai'i. For the first time, we show a direct correlation between net ecosystem calcification and oceanic
POC uptake, which suggests that the reef is using oceanic POC as an energy source to elevate calcification.
However, since climate change reduces oceanic POC production through warming and stratification,
our results imply coral reef calcification may decline. Alternatively, coral reefs located in regions of high
oceanic productivity and that sustain greater rates of oceanic POC uptake may be able to maintain
calcification longer into the future.

1. Introduction

Coral reefs support hundreds of millions of people worldwide by providing food, coastal protection, cultural
sustenance, and economic revenue (Moberg & Folke, 1999). In order to maintain their structure and persist
over time, coral reefs must produce more calcium carbonate (CaCO3) than is removed by destructive
processes including dissolution, physical erosion, and bioerosion (Chave et al., 1972; Eakin, 1996).
Climate‐related perturbations (e.g., ocean acidification and warming) threaten the delicate balance between
calcification and dissolution, and considerable attention has been given to understanding the suite of envir-
onmental factors important for maintaining net calcification (Kleypas et al., 1999). Relationships between
net ecosystem calcification (NEC; the difference between calcification and dissolution) and net ecosystem
production (NEP; the difference between organic production and respiration), aragonite saturation state
(Ωar), light, temperature, dissolved nutrient concentrations, coral cover and water flow have been documen-
ted, but the strength and slope of these correlations vary between ecosystems (Albright et al., 2013; Comeau
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et al., 2014; Courtney et al., 2017; DeCarlo et al., 2017; Langdon & Atkinson, 2005; McMahon et al., 2013;
Page et al., 2017; Shamberger et al., 2011; Silverman et al., 2007, 2009). Even when coral reefs experience
conditions unfavorable for calcification, NEC can be positive (DeCarlo et al., 2017; Shamberger et al.,
2018), which suggests that the range of factors that influence calcification have not been fully constrained.

Corals receive energy to meet their metabolic demands in two ways. First, through their symbiotic relation-
ship with dinoflagellates (family Symbiodiniaceae), corals can receive up to 100% of their daily metabolic
needs via photosynthesis (LaJeunesse et al., 2018; Muscatine et al., 1981). The photosynthetically fixed
carbon provides energy for calcification (i.e., light‐enhanced calcification; Chalker & Taylor, 1975).
Heterotrophy is the second source of energy and can contribute up to 66% of the fixed carbon incorporated
into coral skeletons (Houlbrèque & Ferrier‐Pagès, 2009). The influences of light, carbon dioxide (CO2) levels,
and temperature on the relationship between heterotrophy and coral calcification have been explored
primarily in laboratory settings. With the addition of particulate nutrients (e.g., brine shrimp and mixed
zooplankton), calcification rates increase and growth rates are maintained under low light (Drenkard
et al., 2013; Ferrier‐Pagès et al., 2003). The effects of acidification on heterotrophy and calcification are
mixed; some studies have found reduced heterotrophy under acidified conditions (Houlbréque et al.,
2015; Smith et al., 2016), while others show fed corals sustain calcification rates when exposed to elevated
seawater CO2 (Drenkard et al., 2013; Edmunds, 2011; Towle et al., 2015). While heterotrophy can account
for up to 35% of daily metabolic requirements in healthy corals, bleached corals can receive up to 100% of
daily metabolic requirements from heterotrophy (Grottoli et al., 2006), though metabolic needs of bleached
corals may also be met by catabolism of energy‐rich biomass (Wall et al., 2019). Combined, these studies
suggest some corals can allocate more energy to calcification through increased heterotrophic feeding and
that heterotrophy may allow corals to maintain calcification rates under some stressors.

Coral reefs live in oligotrophic environments yet maintain some of the highest production rates of any ocean
ecosystem (Odum & Odum, 1955; Sargent & Austin, 1949). Early studies suggested that particulate organic
matter (POM) transported to the reef from offshore was an insignificant source of nutrients, and high pro-
ductivity was therefore attributed to efficient, internal nutrient recycling (Johannes et al., 1972). Although
autochthonous POM is an important nutrient source for the reef, more recently, it has become apparent that
oceanic‐sourced POM in small size fractions (<5 μm) is a significant external source of nutrients to coral
reefs, that reefs actively consume oceanic POM, and that advection of offshore POM to the reef is required
to balance reef uptake (Patten et al., 2011; Wyatt et al., 2010, 2013; Yahel et al., 1998). Taken together,
laboratory and field studies suggest that coral reef consumption of oceanic POM may elevate NEC.

In this study, we utilized metabolically induced changes in carbonate chemistry and particulate organic
carbon (POC) to test for a correlation between NEC and oceanic POC uptake (POCoc‐up) on the Kāne'ohe
Bay barrier reef off O'ahu, Hawai'i. We show that higher rates of NEC correspond to greater POCoc‐up, even
at low Ωar. These results provide evidence for a relationship between oceanic POC uptake and reef scale
calcification and suggest that offshore productivity could be a critical component to the resistance or
susceptibility of coral reefs to climate change stressors.

2. Materials and Methods

We conducted two 4‐day studies from 14–17 and 23–26 January 2017 on the southeast portion of the
Kāne'ohe Bay barrier reef (Figure 1). Discrete near‐surface (~1 m) seawater samples for total alkalinity, dis-
solved inorganic carbon, total POC concentration ([POC]), δ13C‐POC, and dissolved inorganic nutrients
were collected at morning (7:00–9:00), noon (12:30–13:30), and evening (16:00–17:00) along an assumed
water flow path, from offshore of the reef crest (three offshore sites), across the reef flat (Sites 2 and 3)
and into the lagoon (one lagoon site; Figure 1 and Table S1 in the supporting information). Due to time con-
straints, the middle offshore station was prioritized and sampled each period, and those samples were used
in this analysis. Water for [POC] and δ13C‐POC analyses were also collected on 20 January and 29 January
from 'Āhuimanu Stream, which empties into central Kāne'ohe Bay (Figure 1a). Nortek Aquadopp Acoustic
Doppler current Profilers were placed at Stations 2–5 and measured current velocity profiles at 4‐min
intervals (Figure 1). We used a quasi‐Lagrangian framework (similar to that used in DeCarlo et al., 2017)
to reconstruct water flow paths and residence time of water on the reef flat. For detailed methods, see
Supporting Information S1.
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3. Results

During the first deployment, average current speeds were 3.3 ± 1.8 cm/s at Site 3 and 7.4 ± 3.8 cm/s at Site 2.
Stormy conditions during the second deployment increased average current speed to 7.4 ± 3.3 cm/s at Site 3
and 20.3 ± 6.9 cm/s at Site 2. This led to different water flow paths between the two deployments (Figure S1).
Flow conditions during the first deployment were driven primarily by tides interacting with the shallow‐

Figure 1. (a) Satellite image of O'ahu and location of Kāne'ohe Bay with study site boxed in white (inset) and image of bay
with locations of sampling sites, Hawai'i Institute of Marine Biology (HIMB), CRIMP2 buoy, and 'Āhuimanu Stream;
white box in (a) shows bathymetric image in (b) of study location and sampling sites. Discrete sampling sites in
(b) are show in white. Instruments were deployed at Stations 2–5, but Stations 4 and 5 were not sampled for water
chemistry. The primary offshore site for sampling was themiddle station. A2 was used as a reference point in the residence
time calculations (see Supporting Information S1; Lowe et al., 2009b).
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water bathymetry, causing water parcels to meander back and forth across the reef flat. Due to these
conditions, eight water parcels traveled from the lagoon to our reef sites before they were sampled
(Figure S2). An additional four reef samples had salinity‐total alkalinity signatures of lagoon water based
on this and previous studies (Figure S3; Courtney et al., 2018; Fagan & Mackenzie, 2007; Shamberger
et al., 2011). All reef data determined to be influenced by lagoon water were not included in this analysis.
During Deployment 2, breaking waves on the reef crest drove unidirectional flow across the reef (e.g.,
Lowe et al., 2009a). Consequently, average residence time during the first deployment was 13.4 ± 2.7 hr
compared to 3.5 ± 1.5 hr during the second deployment (Table S2). After excluding samples affected by
offshore flow from the lagoon, as well as several POM samples lost to laboratory analysis errors (e.g.,
carbonate contamination and dropped samples), a total of 29 of 47 paired NEC‐POCoc‐up samples was
deemed reliable for this analysis.

A two end‐member isotope mixing model was used to calculate POCoc‐up (see Supporting Information S1).
The mixing model relies on the assumptions that each of the sources have a distinct isotopic composition,
there are no additional sources of POC other than the open ocean and the reef, and the δ13C‐POC increases
as water traverses across the reef (e.g., from POC composed of autotrophic phytoplankton to POC derived
from a mix of heterotrophic and autotrophic reef organisms). First and second deployment average offshore
δ13C‐POC was −25.1 ± 0.86‰ and −26.2 ± 1.64‰, respectively (Figure 2a). At Site 2, mean δ13C‐POC was
−22.8 ± 0.70‰ and −23.1 ± 1.20‰ for Deployments 1 and 2, respectively. Mean δ13C‐POC at Site 3 was
−20.1 ± 0.73‰ and −23.2 ± 1.43‰ for Deployments 1 and 2, respectively. Within each site, there was no
significant difference in average δ13C between deployments, except at Site 3 which had a heavier (more posi-
tive) δ13C during the first deployment. This is probably because water residence time was longer during
Deployment 1, which allows reef POM to accumulate and contribute a greater proportion to the total
POM pool. Offshore δ13C‐POC was significantly different from Sites 2 and 3 but not from the stream
(−25.8 ± 0.80‰) or lagoon (first deployment = −25.2 ± 0.63‰, second deployment = −24.1 ± 2.27‰;
Figure 2a). Although lagoon δ13C‐POCmight be influenced by stream POC, samples at Sites 2 and 3 that ori-
ginated in the lagoon (based on flow path reconstructions) were removed from this analysis. Hence, there
should be no influence of lagoon or stream water at Sites 2 or 3 for samples with which we calculated
POCoc‐up. There was no significant difference in mean total [POC] (6.41 ± 4.00 μmol/L) between sites or
deployments (Figure 2b). Mean total [POC] for all sites in Kāne'ohe Bay was greater than the mean surface
[POC] at Hawaii Ocean Time series (2.13 ± 0.50 μmol/L) and lower than or comparable to [POC] measured
at other reefs worldwide (~10 μmol/L; Atkinson & Falter, 2003).

Figure 2. δ13C‐particulate organic carbon (POC;‰) and total POC concentration ([POC], μmol/L) measured during first
(closed circle) and second (open square) deployments; (a) δ13C‐POC (‰; mean ± 1 std dev) at each site, including the
'Āhuimanu Stream mean (black horizontal line) ± 1 standard deviation (shading), and (b) total POC concentration
([POC], μmol/L) at each site, including the Hawaii Ocean Time series (HOT) 1989–2016 mean (black horizontal line)
and ±1 standard deviation (shading).
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NEC and POCoc‐up were calculated across two flow paths: from the reef crest to Site 2 and from the reef crest
to Site 3 (Figures 1 and S1; see Supporting Information S1 for all calculations). During Deployment 1, there
was no significant difference in NEC between sites, but POCoc‐up was higher at Site 3 (Table S3). During
Deployment 2, NEC was higher at Site 2, but there was no significant difference in POCoc‐up between sites.
Average NEC for Deployments 1 and 2 were 1.62 ± 1.40 and 8.45 ± 6.40 mmol C·m−2·hr−1, respectively.
Average POCoc‐up for Deployments 1 and 2 were 0.30 ± 0.20 and 1.03 ± 0.81 mmol C·m−2·hr−1, respectively
(Table S3). Both NEC and POCoc‐up were significantly higher during the second deployment. A linear, posi-
tive correlation exists between NEC and POCoc‐up (slope ± SE = 9.39 ± 1.22, n = 29, R2 = 0.76, p < 0.001),
with higher NEC and POCoc‐up corresponding to faster average flow speeds and presumably greater turbu-

lent velocities (u* =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Cd*U2

p
, where Cd is the bottom drag coefficient, Cd = 0.02 for Kāne'ohe Bay, Lowe

et al., 2009b; and U is the magnitude of the velocity along the flow path; Figure 3 and Table S4). Average flow
speed was linearly correlated to NEC (R2 ≥ 0.62), and both linearly and exponentially correlated to POCoc‐up

(R2≥ 0.69 and R2 ≥ 0.76, respectively; Figure S4 and Table S4). No strong correlations existed between either
NEC or POCoc‐up and NEP, Ωar, light, dissolved inorganic nutrients, and temperature (Table S4).

4. Discussion
4.1. Environmental Drivers of NEC

The Kāne'ohe Bay barrier reef was net calcifying during most of this study, and NEC rates appear to overlap
with previous Kāne'ohe Bay studies (Courtney et al., 2018; Shamberger et al., 2011). However, methodologi-
cal differences between the studies make it difficult to directly compare NEC rates across the three studies.
As noted by Courtney et al. (2018), differences between studies may be attributed to differences in the
method used to estimate residence time and in the spatial scales over which sampling was performed. For
example, Courtney et al. (2018) and Shamberger et al. (2011) used amodel to estimate currents and residence
time on the reef (Lowe et al., 2009a), whereas currents were directly measured in this study. In addition, this
study and Shamberger et al. (2011) measured NEC across a reef transect, while Courtney et al.'s (2018) sites
span the entire width of the barrier reef as well as offshore and lagoon waters. Measuring currents during
this study revealed that NEC is positively correlated with flow speed. Faster flow speeds imply larger turbu-
lent velocities and enhanced vertical exchange, creating thinner boundary layers and promoting mass flux

Figure 3. Oceanic particulate organic carbon uptake (POCoc‐up) and net ecosystem calcification (NEC) for Sites 2
(triangles) and 3 (circles), with linear regression (dashed line) and 95% confidence interval (dotted lines). The color
bar represents average flow speed and calculated turbulent velocity (u*) across the transect, for each water parcel sampled.
The black bars represent uncertainties determined by a Monte Carlo simulation (see Supporting Information S1).
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(Davis & Monismith, 2011). This may have benefitted calcification by
enhancing uptake of carbonate and bicarbonate ions and export of hydro-
gen ions between coral reef calcifiers and the surrounding water (Comeau
et al., 2014; Jokiel, 2011).

NEC was also significantly correlated with POCoc‐up, which suggests that
the ecosystem can utilize this external food source to elevate calcification
(Figure 3 and Table S4). Heterotrophy has been hypothesized to elevate
NEC on other reefs (DeCarlo et al., 2017; Shamberger et al., 2011;
Yeakel et al., 2015). For example, Yeakel et al. (2015) observed a correla-
tion between enhanced offshore productivity and NEC on a Bermuda
coral reef and speculated that pulses of external nutrition were increasing
heterotrophy and NEC on the reef. DeCarlo et al. (2017) measured the
highest coral reef NEC rates, despite low Ωar, at Dongsha reef in the
northern South China Sea, a region affected by strong internal waves
(Alford et al., 2015). Internal waves can deliver nutrient‐rich water to
the surface layer via upwelling, enhance phytoplankton productivity,
and increase the flux of organic matter to nearby coral reefs (Leichter
et al., 1998). Although Palardy et al. (2005) documented reduced coral
feeding during upwelling in the Gulf of Panama, Roder et al. (2010) found
that corals exposed to large internal waves in the western Pacific show
signs of enhanced heterotrophy and growth relative to corals sheltered
from internal waves. While the effects of upwelling on coral reef hetero-
trophy are unclear, and likely influenced by multiple co‐occurring factors

(e.g., temperature and pH), external inputs of POM and subsequent heterotrophic consumption of this
organic matter may have provided additional nutrients to elevate NEC at Dongsha and other reefs
(DeCarlo et al., 2017).

4.2. Environmental Drivers of Oceanic POC Uptake

The rate of POCoc‐up appears to be affected by flow regime, where faster speeds lead to greater POCoc‐up

(Figure 3 and Table S4). The effects of flow speed on capture rates by suspension feeders have been explored
in both laboratory and field studies, and in most cases, optimal speeds for particle trapping are approxi-
mately 10–30 cm/s (Fabricius et al., 1995; Ribes et al., 2003; Sebens et al., 1998; Sebens & Johnson, 1991).
We measured the greatest POCoc‐up rates during Deployment 2, when average current speed was near or
within the range of optimal flow for particle capture (Figures 3 and S4). Calculated turbulent velocity (u*)
was also greater during the second deployment, suggesting that stronger, vertical turbulent mixing aids
POC consumption by breaking down the bottom boundary layer and replacing POC removed by reef
organisms (Monismith et al., 2010). Alternatively, low flow conditions (e.g., during Deployment 1) reduce
turbulent mixing, increase residence times, and may lead to a depleted POM boundary layer.

Ribes et al. (2003) found that particle removal by coral communities was proportional to particle concentra-
tion. At global scales, corals have been shown to consumemore carbon via heterotrophy in areas with higher
concentrations of chlorophyll a, a proxy for phytoplankton (Fox et al., 2018). We observed a significant cor-
relation (slope ± SE = 0.44 ± 0.54, R2 = 0.58, p < 0. 001) between offshore [POC] ([POCoc]) and POCoc‐up

during the second deployment, but POCoc‐up was less sensitive to changes in [POCoc] during the first
deployment (slope ± SE = 0.05 ± 0.01, R2 = 0.94, p < 0.05) when flow speeds were below optimal for particle
capture (Figure 4). These relationships suggest that at optimal flow, the availability of offshore POC can
either limit or enhance particle consumption. However, reduced flow may inhibit POC consumption by
the reef as a result of limited advection and mixing, or other means, despite sufficient offshore availability.

4.3. Implications for Coral Reef Health Under Climate Change Stressors

Significant relationships between NEC and Ωar and between NEC and NEP have been observed in indivi-
dual reef ecosystems, though these relationships are highly variable (Albright et al., 2013; Andersson
et al., 2009; Shamberger et al., 2011; Shaw et al., 2015). However, when examining all the data in this study,
there is no correlation between NEC and reef Ωar or NEP (Figure 5 and Table S4). Similarly, when

Figure 4. Relationship between initial oceanic particulate organic carbon
(POC) concentration ([POCoc], μmol/L) and average POCoc‐up (mmol
C·m−2·hr−1) at Sites 2 and 3, for Deployments 1 (circles) and 2 (squares).
Since multiple parcels at Sites 2 and 3 were tracked back to the same initial
oceanic POC measurement, we used the average POCoc‐up associated
with each offshore POCmeasurement. The error bars represent ±1 standard
deviation.
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combining data from coral reefs globally, no significant relationship is found between NEC and Ωar or NEP
(DeCarlo et al., 2017). In contrast, our data do show relationships between NEC and reef Ωar and between
NEC and NEP when POCoc‐up rates were low (<0.9 mmol C·m−2·hr−1; Figure 5 and Table S4). It is
possible that a global relationship between NEC and Ωar or NEP is not apparent because data from reefs
with both high and low POCoc‐up are being combined. Furthermore, the Kāne'ohe Bay barrier reef
ecosystem maintained positive NEC at low POCoc‐up, indicating that there are other important factors
driving NEC at low POCoc‐up. We do not have enough data to evaluate the sensitivity of NEC to Ωar or
NEP under high POCoc‐up, but laboratory experiments on adult corals suggest heterotrophy may
ameliorate ocean acidification effects (Edmunds, 2011). Experiments on coral spat suggest that
heterotrophy increases the rate of calcification but does not change the sensitivity of calcification to
decreasing Ωar (i.e., coral calcification decreases at similar rates under fed and unfed conditions;
Drenkard et al., 2013). In other words, coral reefs with higher POCoc‐up may not respond any differently
to ocean acidification, but they may persist longer because their initial food supply is greater and hence
supports higher initial NEC rates. Considering heterotrophy of oceanic POM in NEC studies may help to
resolve variability across individual reefs and in the global NEC‐Ωar relationship and identify coral reefs
that are likely to maintain net calcification further into the future under climate change stressors.

Rising sea surface temperatures have enhanced stratification in low‐latitude regions, where coral reefs reside
(Gruber, 2011). These areas experience reduced nutrient fluxes to the upper ocean and a decrease in surface
ocean productivity. Furthermore, ocean acidification is expected to impair calcification and enhance disso-
lution in phytoplankton that form calcium carbonate tests (e.g., coccolithophores; Beaufort et al., 2011).
Altering the structure of oceanic phytoplankton communities may affect coral feeding, although the ability
of corals to selectively feed on phytoplankton based on prey species or size remains somewhat speculative
(Leal et al., 2013). Changes in small‐ and large‐scale circulation patterns may also affect phytoplankton
diversity and dispersal (Barton et al., 2010). Combined, these processes could alter or reduce oceanic POM
export to coral reefs, thereby decreasing the availability of external nutrients required to maintain high
ecosystem calcification rates.

This is the first study to examine the relationship between offshore POC uptake and NEC, and more studies
are needed to comprehensively understand this relationship in the context of ecosystem‐wide processes, dif-
ferent environmental conditions and temporal scales, and multistressor interactions at Kāne'ohe Bay and
other coral reefs worldwide. For example, greater POCoc inputs may support calcification, but high amounts
of organic matter and subsequent decomposition within sediments enhance CaCO3 dissolution (Andersson
& Gledhill, 2013). In addition, NEC is a measure of calcification by all coral reef calcifiers (e.g., corals and
coralline algae), and both calcifying and noncalcifying taxa (e.g., detritovores and sponges) consume POC,
which could impact the relationship between NEC and POCoc‐up. Furthermore, we acknowledge that the

Figure 5. Relationships between (a) net ecosystem calcification (NEC)‐net ecosystem production (NEP) and (b) NEC‐reef
Ωar. Colors represent oceanic particulate organic carbon uptake (POCoc‐up). Significant correlations (p < 0.01) for
NEC‐NEP (R2 = 0.58) and NEC‐Ωar (R

2 = 0.63) exist at POCoc‐up < 0.9 mmol C·m−2·hr−1, which also corresponds to
lower NEC (approximately <6 mmol C·m−2·hr−1).
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observed correlation may be driven by the dependency of both NEC and POCoc‐up on flow speeds. However,
given the experimental evidence linking heterotrophy and coral calcification in laboratory studies
(Drenkard et al., 2013; Edmunds, 2011; Towle et al., 2015), the field correlation between POCoc‐up and
NEC deserves further exploration.

5. Conclusions

The results of our study indicate that the reef ecosystem is consuming oceanic POC andmay be utilizing this
external resource to elevate calcification. POCoc‐up appears to be sensitive to flow speeds, as well as the avail-
ability of offshore POC. Reductions in offshore productivity via changes in surface ocean temperatures, stra-
tification, and nutrient supply have already been documented (Behrenfeld et al., 2006; Boyce et al., 2010;
Polovina et al., 2008). Ocean acidification, warming, and circulation changes will also impact phytoplankton
community composition and dispersion (Barton et al., 2010; Beaufort et al., 2011; Karl et al., 2001; Riebesell
et al., 2000). These changes could decrease or alter the food supply to coral reefs, resulting in reef‐scale
calcification declines and negatively impacting the structure and health of reef ecosystems. Alternatively,
coral reefs that receive an ample supply of oceanic POC (e.g., via internal waves and upwelling) and that
have faster water flow may be more resistant to stressors that impede calcification.
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