5,328 research outputs found
Turbulent transport in tokamak plasmas with rotational shear
Nonlinear gyrokinetic simulations have been conducted to investigate
turbulent transport in tokamak plasmas with rotational shear. At sufficiently
large flow shears, linear instabilities are suppressed, but transiently growing
modes drive subcritical turbulence whose amplitude increases with flow shear.
This leads to a local minimum in the heat flux, indicating an optimal E x B
shear value for plasma confinement. Local maxima in the momentum fluxes are
also observed, allowing for the possibility of bifurcations in the E x B shear.
The sensitive dependence of heat flux on temperature gradient is relaxed for
large flow shear values, with the critical temperature gradient increasing at
lower flow shear values. The turbulent Prandtl number is found to be largely
independent of temperature and flow gradients, with a value close to unity.Comment: 4 pages, 5 figures, submitted to PR
Kinetic instabilities that limit {\beta} in the edge of a tokamak plasma: a picture of an H-mode pedestal
Plasma equilibria reconstructed from the Mega-Amp Spherical Tokamak (MAST)
have sufficient resolution to capture plasma evolution during the short period
between edge-localized modes (ELMs). Immediately after the ELM steep gradients
in pressure, P, and density, ne, form pedestals close to the separatrix, and
they then expand into the core. Local gyrokinetic analysis over the ELM cycle
reveals the dominant microinstabilities at perpendicular wavelengths of the
order of the ion Larmor radius. These are kinetic ballooning modes (KBMs) in
the pedestal and microtearing modes (MTMs) in the core close to the pedestal
top. The evolving growth rate spectra, supported by gyrokinetic analysis using
artificial local equilibrium scans, suggest a new physical picture for the
formation and arrest of this pedestal.Comment: Final version as it appeared in PRL (March 2012). Minor improvements
include: shortened abstract, and better colour table for figures. 4 pages, 6
figure
Glycogen and its metabolism: some new developments and old themes
Glycogen is a branched polymer of glucose that acts as a store of energy in times of nutritional sufficiency for utilization in times of need. Its metabolism has been the subject of extensive investigation and much is known about its regulation by hormones such as insulin, glucagon and adrenaline (epinephrine). There has been debate over the relative importance of allosteric compared with covalent control of the key biosynthetic enzyme, glycogen synthase, as well as the relative importance of glucose entry into cells compared with glycogen synthase regulation in determining glycogen accumulation. Significant new developments in eukaryotic glycogen metabolism over the last decade or so include: (i) three-dimensional structures of the biosynthetic enzymes glycogenin and glycogen synthase, with associated implications for mechanism and control; (ii) analyses of several genetically engineered mice with altered glycogen metabolism that shed light on the mechanism of control; (iii) greater appreciation of the spatial aspects of glycogen metabolism, including more focus on the lysosomal degradation of glycogen; and (iv) glycogen phosphorylation and advances in the study of Lafora disease, which is emerging as a glycogen storage disease
Lafora disease offers a unique window into neuronal glycogen metabolism
Lafora disease (LD) is a fatal, autosomal recessive, glycogen-storage disorder that manifests as severe epilepsy. LD results from mutations in the gene encoding either the glycogen phosphatase laforin or the E3 ubiquitin ligase malin. Individuals with LD develop cytoplasmic, aberrant glycogen inclusions in nearly all tissues that more closely resemble plant starch than human glycogen. This Minireview discusses the unique window into glycogen metabolism that LD research offers. It also highlights recent discoveries, including that glycogen contains covalently bound phosphate and that neurons synthesize glycogen and express both glycogen synthase and glycogen phosphorylase
Zero-Turbulence Manifold in a Toroidal Plasma
Sheared toroidal flows can cause bifurcations to zero-turbulent-transport
states in tokamak plasmas. The maximum temperature gradients that can be
reached are limited by subcritical turbulence driven by the parallel velocity
gradient. Here it is shown that q/\epsilon (magnetic field pitch/inverse aspect
ratio) is a critical control parameter for sheared tokamak turbulence. By
reducing q/\epsilon, far higher temperature gradients can be achieved without
triggering turbulence, in some instances comparable to those found
experimentally in transport barriers. The zero-turbulence manifold is mapped
out, in the zero-magnetic-shear limit, over the parameter space (\gamma_E,
q/\epsilon, R/L_T), where \gamma_E is the perpendicular flow shear and R/L_T is
the normalised inverse temperature gradient scale. The extent to which it can
be constructed from linear theory is discussed.Comment: 5 Pages, 4 Figures, Submitted to PR
Comparison of BES measurements of ion-scale turbulence with direct, gyrokinetic simulations of MAST L-mode plasmas
Observations of ion-scale (k_y*rho_i <= 1) density turbulence of relative
amplitude dn_e/n_e <= 0.2% are available on the Mega Amp Spherical Tokamak
(MAST) using a 2D (8 radial x 4 poloidal channel) imaging Beam Emission
Spectroscopy (BES) diagnostic. Spatial and temporal characteristics of this
turbulence, i.e., amplitudes, correlation times, radial and perpendicular
correlation lengths and apparent phase velocities of the density contours, are
determined by means of correlation analysis. For a low-density, L-mode
discharge with strong equilibrium flow shear exhibiting an internal transport
barrier (ITB) in the ion channel, the observed turbulence characteristics are
compared with synthetic density turbulence data generated from global,
non-linear, gyro-kinetic simulations using the particle-in-cell (PIC) code
NEMORB. This validation exercise highlights the need to include increasingly
sophisticated physics, e.g., kinetic treatment of trapped electrons,
equilibrium flow shear and collisions, to reproduce most of the characteristics
of the observed turbulence. Even so, significant discrepancies remain: an
underprediction by the simulations of the turbulence amplituide and heat flux
at plasma periphery and the finding that the correlation times of the
numerically simulated turbulence are typically two orders of magnitude longer
than those measured in MAST. Comparison of these correlation times with various
linear timescales suggests that, while the measured turbulence is strong and
may be `critically balanced', the simulated turbulence is weak.Comment: 27 pages, 11 figure
Transport Bifurcation in a Rotating Tokamak Plasma
The effect of flow shear on turbulent transport in tokamaks is studied
numerically in the experimentally relevant limit of zero magnetic shear. It is
found that the plasma is linearly stable for all non-zero flow shear values,
but that subcritical turbulence can be sustained nonlinearly at a wide range of
temperature gradients. Flow shear increases the nonlinear temperature gradient
threshold for turbulence but also increases the sensitivity of the heat flux to
changes in the temperature gradient, except over a small range near the
threshold where the sensitivity is decreased. A bifurcation in the equilibrium
gradients is found: for a given input of heat, it is possible, by varying the
applied torque, to trigger a transition to significantly higher temperature and
flow gradients.Comment: 4 pages, 4 figures, submitted to PR
Salicylaldehyde hydrazones: buttressing of outer sphere hydrogen-bonding and copper-extraction properties
Salicylaldehyde hydrazones are weaker copper extractants than their oxime derivatives, which are used in hydrometallurgical processes to recover ~20 % of the world’s copper. Their strength, based on the extraction equilibrium constant Ke, can be increased by nearly three orders of magnitude by incorporating electron-withdrawing or hydrogen-bond acceptor groups (X) ortho to the phenolic OH group of the salicylaldehyde unit. Density functional theory calculations suggest that the effects of the 3-X substituents arise from a combination of their influence on the acidity of the phenol in the pH-dependent equilibrium, Cu2+ + 2Lorg ⇌ [Cu(L–H)2]org + 2H+, and on their ability to ‘buttress’ interligand hydrogen bonding by interacting with the hydrazone N–H donor group. X-ray crystal structure determination and computed structures indicate that in both the solid state and the gas phase, coordinated hydrazone groups are less planar than coordinated oximes and this has an adverse effect on intramolecular hydrogen-bond formation to the neighbouring phenolate oxygen atoms
- …