4 research outputs found

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Viability and Adhesion of Periodontal Ligament Fibroblasts on a Hydroxyapatite Scaffold Combined with Collagen, Polylactic Acid–Polyglycolic Acid Copolymer and Platelet-Rich Fibrin: A Preclinical Pilot Study

    No full text
    Background: Conventional periodontal therapy relies on bone regeneration strategies utilizing scaffolds made of diverse materials, among which collagen, to promote cell adhesion and growth. Objective: To evaluate periodontal ligament fibroblast (HPdLF) cell adhesion and viability for periodontal regeneration purposes on hydroxyapatite scaffolds containing collagen (HAp-egg shell) combined with polylactic acid–polyglycolic acid copolymer (PLGA) and Platelet-Rich Fibrin (PRF). Methods: Four variations of the HAp-egg shell were used to seed HPdLF for 24 h and evaluate cell viability through a live/dead assay: (1) (HAp-egg shell/PLGA), (2) (HAp-egg shell/PLGA + collagen), (3) (HAp-egg shell/PLGA + PRF) and (4) (HAp-egg shell/PLGA + PRF + collagen). Cell adhesion and viability were determined using confocal microscopy and quantified using central tendency and dispersion measurements; significant differences were determined using ANOVA (p < 0.05). Results: Group 1 presented low cell viability and adhesion (3.70–10.17%); groups 2 and 3 presented high cell viability and low cell adhesion (group 2, 59.2–11.1%, group 3, 58–4.6%); group 4 presented the highest cell viability (82.8%) and moderate cell adhesion (45%) (p = 0.474). Conclusions: The effect of collagen on the HAp-egg shell/PLGA scaffold combined with PRF favored HPdLF cell adhesion and viability and could clinically have a positive effect on bone defect resolution and the regeneration of periodontal ligament tissue

    Integrated genomic epidemiology and phenotypic profiling of Clostridium difficile across intra-hospital and community populations in Colombia

    No full text
    Clostridium difficile, the causal agent of antibiotic-associated diarrhea, has a complex epidemiology poorly studied in Latin America. We performed a robust genomic and phenotypic profiling of 53 C. difficile clinical isolates established from diarrheal samples from either intrahospital (IH) or community (CO) populations in central Colombia. In vitro tests were conducted to evaluate the cytopathic effect, the minimum inhibitory concentration of ten antimicrobial agents, the sporulation efficiency and the colony forming ability. Eleven different sequence types (STs) were found, the majority present individually in each sample, however in three samples two different STs were isolated. Interestingly, CO patients were infected with STs associated with hypervirulent strains (ST-1 in Clade-2). Three coexistence events (two STs simultaneously detected in the same sample) were observed always involving ST-8 from Clade-1. A total of 2,502 genes were present in 99% of the isolates with 95% of identity or more, it represents a core genome of 28.6% of the 8,735 total genes identified in the set of genomes. A high cytopathic effect was observed for the isolates positive for the two main toxins but negative for binary toxin (TcdA+/TcdB+/CDT? toxin production type), found only in Clade-1. Molecular markers conferring resistance to fluoroquinolones (cdeA and gyrA) and to sulfonamides (folP) were the most frequent in the analyzed genomes. In addition, 15 other markers were found mostly in Clade-2 isolates. These results highlight the regional differences that C. difficile isolates display, being in this case the CO isolates the ones having a greater number of accessory genes and virulence-associated factors. © 2019, The Author(s)

    Integrated genomic epidemiology and phenotypic profiling of Clostridium difficile across intra-hospital and community populations in Colombia

    No full text
    Clostridium difficile, the causal agent of antibiotic-associated diarrhea, has a complex epidemiology poorly studied in Latin America. We performed a robust genomic and phenotypic profiling of 53 C. difficile clinical isolates established from diarrheal samples from either intrahospital (IH) or community (CO) populations in central Colombia. In vitro tests were conducted to evaluate the cytopathic effect, the minimum inhibitory concentration of ten antimicrobial agents, the sporulation efficiency and the colony forming ability. Eleven different sequence types (STs) were found, the majority present individually in each sample, however in three samples two different STs were isolated. Interestingly, CO patients were infected with STs associated with hypervirulent strains (ST-1 in Clade-2). Three coexistence events (two STs simultaneously detected in the same sample) were observed always involving ST-8 from Clade-1. A total of 2,502 genes were present in 99% of the isolates with 95% of identity or more, it represents a core genome of 28.6% of the 8,735 total genes identified in the set of genomes. A high cytopathic effect was observed for the isolates positive for the two main toxins but negative for binary toxin (TcdA+/TcdB+/CDT? toxin production type), found only in Clade-1. Molecular markers conferring resistance to fluoroquinolones (cdeA and gyrA) and to sulfonamides (folP) were the most frequent in the analyzed genomes. In addition, 15 other markers were found mostly in Clade-2 isolates. These results highlight the regional differences that C. difficile isolates display, being in this case the CO isolates the ones having a greater number of accessory genes and virulence-associated factors. © 2019, The Author(s)
    corecore