2 research outputs found

    Experimental data on the production and characterization of biochars derived from coconut-shell wastes obtained from the Colombian Pacific Coast at low temperature pyrolysis

    Get PDF
    Biochars are emerging eco-friendly products showing outstanding properties in areas such as carbon sequestration, soil amendment, bioremediation, biocomposites, and bioenergy. These interesting materials can be synthesized from a wide variety of waste-derived sources, including lignocellulosic biomass wastes, manure and sewage sludge. In this work, abundant data on biochars produced from coconut-shell wastes obtained from the Colombian Pacific Coast are presented. Biochar synthesis was performed varying the temperature (in the range: 280 �Ce420 �C) and O2 feeding (in the range: 0e5% v/v) in the pyrolysis reaction. Production yields and some biochar properties such as particle size, Zeta Potential, elemental content (C, N, Al, B, Ca, Cu, Fe, K, Li, Mg, Mn, Na, P, S, Ti, Zn), BET surface area, FT-IR spectrum, XRD spectrum, and SEM morphology are presented. This data set is a comprehensive resource to gain a further understanding of biochars, and is a valuable tool for addressing the strategic exploitation of the multiple benefits they hav

    Effect of pyrolysis, impregnation, and calcination conditions on the physicochemical properties of TiO2/Biochar composites intended for photocatalytic applications

    Get PDF
    Biochars are outstanding materials obtained from the pyrolysis of biomass, possessing unique physicochemical properties that are attractive for many environmental applications, including photocatalysis. In this work, we have synthesized for the first time TiO2/Biochar composites using Aeroxide P25 TiO2 and biochars produced from the thermal treatment at low (or null) oxygen content of Colombian coconut shells. To explore and ultimately tune the final physicochemical properties of the TiO2/Biochars materials, a facile wet impregnation method was assessed, in which the following factors were evaluated: 1) Temperature and 2) %O2 in the pyrolysis of the biomass, 3) TiO2/Biochar ratio used in the impregnation and 4) Calcination temperature of the TiO2/Biochar composites. A comprehensive characterization of the novel composites was done, using techniques such as: XRD, XPS, BET, ATR-FTIR, diffuse reflectance, PL, SEM, and electrochemical analysis. The material synthesized with TPyrol = 350 â—¦C, %O2 = 2.5, T/B = 0.8 and TCal of 800 â—¦C presented notable properties such as low Eg, reduced recombination of e--h+ pairs, a high surface area, and a relatively high photogeneration of charges, and interestingly, it experienced phase transition from Anatase-Rutile to Anatase-Brookite. On the other hand, low TPyrol and high %O2 values conduct to hydrophilic functional groups on the TiO2/Biochar composites, whereas the use of higher TPyrol and TCal lead to a more hydrophobic character but promote the reduction of the recombination of photogenerated e--h+ pairs. As a result, this information is relevant for planning future applications of photocatalysis for degrading pollutants of different chemical nature.Minciencias-Fulbright-Universidad del Vall
    corecore