77 research outputs found

    Strain-Driven Structure-Ferroelectricity Relationship in hexagonal TbMnO3_3 Films

    Full text link
    Thin films and heterostructures of hexagonal manganites as promising multiferroic materials have attracted a considerable interest recently. We report structural transformations of high quality epitaxial h-TMO/YSZ(111) films, analyzed by means of various characterization techniques. A phase transition from P63mc to P63mcm structure at TC~800 K was observed by temperature dependent Raman spectroscopy and optical ellipsometry. The latter probing directly electronic system, indicates its modification at the structural phase transition likely due to charge transfer from oxygen to Mn. In situ transmission electron microscopy (TEM) of the lamella samples displayed an irreversible P63mc-P63mcm transformation and vanishing of ferroelectric domains already at 410 K. After the temperature cycling (300K-1300K-300K) the room temperature TEM of h-TMO films revealed an inhomogeneous microstructure, containing ferroelectric and paraelectric nanodomains with P63mc and P63mcm structure, respectively. We point out a strong influence of stress relaxation, induced by temperature and by constrained sample geometry onto the structure and ferroelectricity in strain-stabilized h-TMO thin films.Comment: 24 pages, 10 figure

    Two Dimensional Triptycene End‐Capping and Its Influence on the Self‐Assembly of Quinoxalinophenanthrophenazines †

    Get PDF
    In this report we investigated two-dimensionally triptycene end-capped QPPs in terms of their solution and solid-state behavior. For this purpose, a triphenylene based ortho-diamine decorated with two triptycenyl units as well as a phenylene diamine with two non-annulated triptycene units have been synthesized. Sequences of condensation reactions with a pyrene-based tetraketone and ortho-diamines yielded a series of QPPs and UV/Vis investigations of the corresponding compounds led to the conclusion, that the QPPs form dimers in solution, which was further supported by MALDI-TIMS-TOF-MS. Single-crystal X-ray analysis of the triply and quadruply triptycene end-capped QPPs furthermore showed short π-π-distances of 3.3—3.4 Å and a perfect shape match during the dimerization of the triply triptycenyl end-capped QPP making it possible synthon fo

    τ\tauSPECT: A spin-flip loaded magnetic ultracold neutron trap for a determination of the neutron lifetime

    Full text link
    The confinement of ultracold neutrons (UCNs) in a three dimensional magnetic field gradient trap allows for a measurement of the free neutron lifetime with superior control over spurious loss channels and can provide a large kinetic energy acceptance to enhance statistical sensitivity. In this paper, we present the first successful implementation of a pulsed spin-flip based loading scheme for a three-dimensional magnetic UCN trap. The measurements with the τ\tauSPECT experiment were performed at the pulsed UCN source of the research reactor TRIGA Mainz. We report on detailed investigations of major systematic effects influencing the neutron storage time, statistically limited by the size of the recorded data set. The extracted neutron storage time constant of τ=859(16)s\tau = 859(16)\mathrm{s} is compatible with, but not to be interpreted as, a measurement of the free neutron lifetime.Comment: 15 pages, 19 figure

    Statistical processing and visualization of the medical data

    Get PDF
    The aim of the research is to consider basic concepts of descriptive statistics and to show basic histograms for the medical data

    Surgical Data Science - from Concepts toward Clinical Translation

    Get PDF
    Recent developments in data science in general and machine learning in particular have transformed the way experts envision the future of surgery. Surgical Data Science (SDS) is a new research field that aims to improve the quality of interventional healthcare through the capture, organization, analysis and modeling of data. While an increasing number of data-driven approaches and clinical applications have been studied in the fields of radiological and clinical data science, translational success stories are still lacking in surgery. In this publication, we shed light on the underlying reasons and provide a roadmap for future advances in the field. Based on an international workshop involving leading researchers in the field of SDS, we review current practice, key achievements and initiatives as well as available standards and tools for a number of topics relevant to the field, namely (1) infrastructure for data acquisition, storage and access in the presence of regulatory constraints, (2) data annotation and sharing and (3) data analytics. We further complement this technical perspective with (4) a review of currently available SDS products and the translational progress from academia and (5) a roadmap for faster clinical translation and exploitation of the full potential of SDS, based on an international multi-round Delphi process

    Strategy for large???scale monolithic Perovskite/Silicon tandem solar cell: A review of recent progress

    Get PDF
    For any solar cell technology to reach the final mass-production/commercialization stage, it must meet all technological, economic, and social criteria such as high efficiency, large-area scalability, long-term stability, price competitiveness, and environmental friendliness of constituent materials. Until now, various solar cell technologies have been proposed and investigated, but only crystalline silicon, CdTe, and CIGS technologies have overcome the threshold of mass-production/commercialization. Recently, a perovskite/silicon (PVK/Si) tandem solar cell technology with high efficiency of 29.1% has been reported, which exceeds the theoretical limit of single-junction solar cells as well as the efficiency of stand-alone silicon or perovskite solar cells. The International Technology Roadmap for Photovoltaics (ITRPV) predicts that silicon-based tandem solar cells will account for about 5% market share in 2029 and among various candidates, the combination of silicon and perovskite is the most likely scenario. Here, we classify and review the PVK/Si tandem solar cell technology in terms of homo- and hetero-junction silicon solar cells, the doping type of the bottom silicon cell, and the corresponding so-called normal and inverted structure of the top perovskite cell, along with mechanical and monolithic tandemization schemes. In particular, we review and discuss the recent advances in manufacturing top perovskite cells using solution and vacuum deposition technology for large-area scalability and specific issues of recombination layers and top transparent electrodes for large-area PVK/Si tandem solar cells, which are indispensable for the final commercialization of tandem solar cells
    corecore