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1 | INTRODUCTION

Crystalline silicon solar cells account for more than 95%
of the total market share, and the remaining 5% is from
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Abstract

For any solar cell technology to reach the final mass-production/commerciali-
zation stage, it must meet all technological, economic, and social criteria such
as high efficiency, large-area scalability, long-term stability, price competitive-
ness, and environmental friendliness of constituent materials. Until now, vari-
ous solar cell technologies have been proposed and investigated, but only
crystalline silicon, CdTe, and CIGS technologies have overcome the threshold
of mass-production/commercialization. Recently, a perovskite/silicon (PVK/Si)
tandem solar cell technology with high efficiency of 29.1% has been reported,
which exceeds the theoretical limit of single-junction solar cells as well as the
efficiency of stand-alone silicon or perovskite solar cells. The International
Technology Roadmap for Photovoltaics (ITRPV) predicts that silicon-based
tandem solar cells will account for about 5% market share in 2029 and among
various candidates, the combination of silicon and perovskite is the most likely
scenario. Here, we classify and review the PVK/Si tandem solar cell technology
in terms of homo- and hetero-junction silicon solar cells, the doping type of
the bottom silicon cell, and the corresponding so-called normal and inverted
structure of the top perovskite cell, along with mechanical and monolithic tan-
demization schemes. In particular, we review and discuss the recent advances
in manufacturing top perovskite cells using solution and vacuum deposition
technology for large-area scalability and specific issues of recombination layers
and top transparent electrodes for large-area PVK/Si tandem solar cells, which

are indispensable for the final commercialization of tandem solar cells.
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CIGS- and CdTe-based solar cells." In order for a specific
solar cell technology to reach the final commercialization
stage, it must satisfy not only the technical criteria, such
as high efﬁciency,2 long-term stability,3 and the
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possibility of a large area,® but also the socio-economic
criteria such as price competitiveness,” human body, and
environmental friendliness® of constituent materials. A
wide variety of solar cell concepts have been proposed,
and intensive research has been conducted to satisfy the
above-mentioned criteria till now, but most of these tech-
nologies have not exceeded the threshold of final mass
production commercialization.

Currently, the cost of crystalline silicon solar cells rep-
resented by Al-BSF or PERC has already fallen below
10 cents per watt and is predicted to decrease continuously
to ~7 cents by reducing the amount of polysilicon used, as
the wafer thickness decreases or the increase in power
generation per cell as the wafer size increases from M2 to
M12.7 Therefore, there is no doubt that crystalline silicon
solar cells will maintain the best price competitiveness
among all solar cell technologies in the future, but the effi-
ciency is already approaching the practical limiting effi-
ciency of singlejunction solar cells, requiring an
innovative strategy.® A multi-junction or tandem solar cell
manufactured by stacking a semiconductor PN junction
with a large bandgap on top of another semiconductor PN
junction with a small bandgap is one of the alternatives
that can overcome the fundamental efficiency limitations
of a silicon solar cell” The III to V compound
semiconductor-based triple tandem solar cell was recog-
nized as one of the ultra-high-efficiency solar cell candi-
dates with high efficiency of 37.9%."° However, III to V
compound semiconductor technology has failed to com-
mercialize mass production because it requires expensive
vacuum equipment and precursors for thin-film synthesis
and is known to be harmful to the human body and envi-
ronment.''? As an alternative, studies on implementing
tandem solar cells of various structures by stacking various
low-cost solar cells have been intensively studied in recent
years. Top cell candidates include organic solar cells,*?
CIGS solar cells, dye-sensitized solar cells,** and perovskite
(PVK) solar cells’> with relatively high bandgap energy,
while bottom cells include narrow bandgap materials such
as silicon solar cells and CIGS.'® Representative hetero-
junction tandem solar cells are as follows: Dye-sensitized
solar cells/silicon tandem solar cells using PEDOT:FTS
with higher transparency and lower charge transfer resis-
tance than Pt used as an interfacial catalyst layer,'*
solution-processed organic/organic tandem solar cells
guided by a semi-empirical analysis,'” PVK/CIGS tandem
solar cells with conformal monolayer contacts with loss-
less interfaces,"® PVK/organic tandem solar cells with low-
loss interconnecting layers,'® a monolithic all-PVK tandem
solar cell with a strategy to reduce Sn vacancies in mixed
Pb-Sn narrow-bandgap PVKs>® have been reported.

Among these various heterogeneous tandem solar cell
technologies, perovskite/silicon (PVK/Si) tandem solar

cells are considered to have the highest potential in terms
of high efficiency and price competitiveness. The German
research team reported a PVK/Si tandem solar cell with
an efficiency of 29.1%, which exceeds the theoretical limit
of a single junction solar cell close to a standalone silicon
or PVK solar cell.?! Comprehensive optical simulations
conducted by various research institutes show that when
the current matching of the monolithic PVK/Si tandem
solar cell is optimized, the ideal current density value is
~21 mA/cm?, and the corresponding efficiency is reported
to be ~31%.>*** In order to achieve such an ideal current
density, novel device structures, and new materials that
can minimize light reflection at the surface and parasitic
light absorption by electron and hole transport layers need
to be designed. Because silicon solar cells are known to be
very stable devices, the long-term stability issue of PVK/Si
tandem solar cells stems entirely from top PVK cells.*
Recently, through intensive research on the improvement
of long-term stability of PVK solar cells, it was found that
forming A and X sites in a mixed composition rather than
a single composition greatly improves the stability of the
solar cell.***” More stable PVK thin films with minimal
lattice mismatch can be formed through mixed-cation and
mixed-halide approaches designed in consideration of a
tolerance factor.?® In this review article, we have catego-
rized and discussed the differences, advantages, and disad-
vantages of tandem solar cells depending on the type of
doping or junction of bottom silicon solar cells. In particu-
lar, we review the recent advances in manufacturing top
PVK cells using solution and vacuum deposition technol-
ogy for large-area scalability along with specific issues of
recombination layers and top transparent electrodes for
large-area PVK/Si tandem solar cells, which are indispens-
able for the final commercialization of tandem solar cells.

2 | CLASSIFICATION OF PVK/Si
TANDEM SOLAR CELLS IN TERMS
OF STRUCTURE TYPES

2.1 | The 4-terminal PVK/Si tandem
solar cell

The 4-terminal (4T) tandem solar cells have the advan-
tage that the top and bottom cells can independently con-
tribute to the maximum output power because the top
and bottom cells are only optically coupled without elec-
trical connection by using the top solar cells as filters.
(Figure 1B,C). In order to maximize the efficiency of a 4T
tandem solar cell, it is necessary to maximize the effi-
ciency of each top and bottom cell at the matching point
of current and voltage, respectively. The highest theoreti-
cal 4T tandem solar cell has a PCE of 46% (Figure 1E).'?
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Taking advantage of these 4T tandem solar cells, various
4T tandem solar cells are being studied. Si solar cells,
which occupy the mainstream of the solar cell market,
are the most suitable candidates for commercialization in
tandem solar cell research.?® In addition, PVK with a tun-
able bandgap is a suitable candidate as the top cell of a
Si-based tandem solar cell.*® The structure of a typical 4T
tandem PVK/Si solar cell can be classified as follows.
There are PIN structured PVK top cell/n-si based
homojunction Si bottom cell (Figure 2A),*' NIP struc-
tured PVK top cell/p-si based homojunction Si bottom
cell (Figure 2B),** PIN structured PVK top cell/n-si based
heterojunction Si bottom cell (Figure 2C)** and NIP
structured PVK top cell/n-si based heterojunction Si bot-
tom cell (Figure 2D).*?

Representative 4T PVK/Si tandem solar cells based on
a homojunction Si bottom cell as a function of the type of
top cell structures such as NIP or PIN. Bailie et al devel-
oped the first 4T PVK/Si tandem solar cells with 17% effi-
ciency by using a silver nanowire transparent electrode
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on an NIP structure PVK top cell based on CH;NH;Pbl;
and applied it to a low-quality multi-crystalline Si bottom
cell.'® Duong et al analyzed the electrical and optical
power loss in detail and produced an NIP structured PVK
top cell of >80% near-infrared transmittance based on
the design for the optimal tandem cell with ITO transpar-
ent electrode.® This was applied to the PERL cell, and an
efficiency of 20.1% was reported. Ren et al increased the
efficiency of the NIP structured PVK top cell by using a
PVK film with a low density of bandgap states applied
with postdeposition oxygen treatment and developed a
highly transparent MoOs/Au/MoOj electrode.®® This was
applied on a p-Si-based homojunction Si bottom cell to
fabricate a 4T tandem solar cell and reported efficiency of
23.6%. Ren et al obtained high transmittance in the long-
wavelength range using a MoO5;/Au/MoO; transparent
electrode.*® An NIP structured CH;NH;Pbl;-based PVK
top cell was fabricated by introducing a PVK thin film
with reduced defect density using oxygen annealing treat-
ment. In addition, a novel bio-mimicking elastomeric

Wide-bandgap cell

r or |
\

-
=
&
?
3
=
=
a
a2
S
=
o
=

Low-bandgap cell

D)

2T tandem PCE (%)

3.0 -46.0
_ -40.9
S
© 25 -35.8
g

-30.7
< 20-
B -25.6
o
© 1.5- 204
o
£ 153
g
g 1.0- 10.2
@
-5.11
0.5~ \ ‘ | 0
0.5 1.0 1.5 2.0 2.5 3.0
Top cell bandgap (eV)
FIGURE 1

(€)
\L
gP i
=3

Low-bandgap cell

(E)
4T tandem PCE (%)
-46.1
_ 41.0
>
8, & -35.8
o .
g -30.7
2
= -25.6
el
= 20.5
bt
£ 154
S
5 10.24
[e0]
5.12
0

0.5 1.0 1.5 2.0 2.5 3.0
Top cell bandgap (eV)

Schematics of tandem architectures: (A) 4-terminal mechanically stacked (B) 2-terminal monolithically integrated

(C) 4-terminal optical spectral splitting. (D) and (E) theoretical maximum PCE for 2T and 4T tandem solar cells. Reproduced with

permission: Copyright 2019, John Wiley and Sons'®
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FIGURE 2

Schematics of PVK/Si tandem architectures: 4-terminal mechanically stacked (A) PIN structured PVK top cell/n-si based

homojunction Si bottom cell. Reproduced with permission: Copyright 2019, John Wiley and Sons. (B) NIP structured PVK top cell/p-si
based homojunction Si bottom cell. Copyright 2019 American Chemical Society.** (C) PIN structured PVK top cell/n-si based heterojunction
Si bottom cell. Reproduced with permission: Copyright 2019, John Wiley and Sons.*! (D) NIP structured PVK top cell/n-si based
heterojunction Si bottom cell, 2-terminal monolithically integrated. Reproduced with permission: Copyright 2019, John Wiley and Sons.*
(E) NIP structured PVK top cell/n-si based homojunction Si bottom cell. Copyright 2019 American Chemical Society.”* (F) PIN structured
PVK top cell/p-si based homojunction Si bottom cell. Copyright 2019 Elsevier Ltd.>* (G) NIP structured PVK top cell/n-si based
heterojunction Si bottom cell. Reproduced with permission: Copyright 2019, John Wiley and Sons.>® (H) PIN structured PVK top cell/n-si
based heterojunction Si bottom cell Reproduced with permission: Copyright 2019, John Wiley and Sons>®

petal-based light trapping layer was developed and
applied to the top cell and introduced on the PERC to
make a 4T PVK/Si tandem solar cell and reported effi-
ciency of 22.4%. Dewi et al compared mesoporous TiO,
and planar SnO, that are used as electron transport layer
(ETL) layers in an NIP structured PVK top cell.*’ By
applying these ETLs, the PVK top cells based on
Cs0.0s(MA.17F A0 83)0.95Pb(Io.83Br0.17)3) and (FAos3
Cso.17PbI,Br) with 1.58 and 1.72 eV band gaps were pro-
duced. This top cell was applied to an n-Si-based
homojunction Si bottom cell to make a 4T PVK/Si tan-
dem solar cell and reported efficiencies of 25.5% (1.58 eV)
and 22.4% (1.72 eV). Najafi et al developed an PIN struc-
tured PVK top cell with ZnO ETL as a sputtering damage
buffer layer by employing the ALD process.*® This top

cell was applied to the PERT cell to make a 4T tandem
solar cell and reported efficiency of 21.1%. Quiroz et al
developed an all-solution PVK solar cell to improve the
transmittance in the infrared wavelength range and
introduced CuSCN as the anti-reflection coating (ARC)
layer and used it as a selective contact between the trans-
parent electrode and the PVK.*® A silver nanowire elec-
trode with a transmittance of 84% or more in the region
of 300 to 1100 nm was introduced into the top cell of
CH;NH;Pbl;-based PVK having an PIN structure. This
was applied to the bottom cell of each of the PERL cells
to make a 4T PVK/Si tandem solar cell and reported an
efficiency of 26.7%. Duong et al fabricated a PVK top cell
of Rby ¢5CSp.005sMAg.1425FA¢ 7125PbL,Br with a band gap of
1.72 eV.* In addition, the 2D PVK precursor as MABr
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was introduced on the 3D PVK film, and this result
showed that the device performance was improved by
reducing the surface defects of the 3D PVK film. This top
cell was placed on the PERL cell to make a 4T PVK/Si
tandem solar cell, and an efficiency of 26.2% (1 cm?) was
reported.

As representative 4T PVK/Si tandem solar cells of
NIP structured PVK top cell or PIN structured PVK top
cell based on heterojunction Si bottom cell, for the first
time, Loper et al obtained a transmittance of >55% in the
near-infrared spectral region by using an ITO transparent
electrode design without a metallic component on a PVK
top cell with an NIP structure based on CH;NH;PbI;.*!
This technology was applied to a heterojunction Si bot-
tom cell to make a 4T PVK/Si tandem solar cell, and due
to high transmittance, the current density value of the
bottom cell was increased, and an efficiency of 13.4% was
reported. Werner et al used a MoO,, buffer layer to protect
sputtering damage and used an indium zinc oxide (IZO)
layer having an absorption of less than 3% at 400 to
1200 nm and sheet resistance of 35 Q/sq as a transparent
electrode.** The CH;NH;Pbl;-based PVK top cell of the
NIP structure using this transparent electrode obtained
>60% transmittance in the 800 to 1200 nm wavelength
range. This top cell was applied on a heterojunction Si
bottom cell to increase the current density to make a 4T
PVK/Si tandem solar cell with an efficiency of 18.18%.
Werner et al fabricated a CH;NH;Pbl;-based PVK top
cell with an NIP structure that increased the area from
0.2 to 1 cm>* This was applied to a heterojunction Si
solar cell on top to make a 4T PVK/Si tandem solar cell
and reported efficiencies of 23.0% (1 cm?) and 25.2%
(0.25 cm?). Yang et al fabricated an NIP structured PVK
top cell based on FAgg3;Csy17Pb(Iy¢Bros); with a wide
bandgap of 1.75 eV using nonstoichiometric precursor
chemistry with excess methylammonium halides and
applied it to a heterojunction Si solar cell.** Thus, a 4T
PVK/Si tandem solar cell was produced and an efficiency
of 20.3% was reported. Zhang et al made a 4T PVK/Si tan-
dem solar cell by introducing an PIN structure
(Cs0.05(MAg 17FA¢ 53)0.0sPb(I0.0Bro.1)3) based PVK top cell
on the IBC cell with ~92% near-infrared transmittance*’
that reported efficiency of 25.7%. Jaysankar et al designed
a 4T PVK/Si tandem solar cell structure with minimal
light loss when the Si surface was textured and flat based
on optical simulation.** Based on this design, a 4T
PVK/Si tandem solar cell was fabricated by applying a
PVK top cell based on the NIP structure of
Cso.1FA( oPbl, g65B1p 135 on the IBC bottom cell to pro-
duce efficiencies of 25.5% (0.13 cm?) and 23.9% (4 cm?).
Wang et al introduced an ultrathin gold nanomesh layer
using the Frank-van der Merwe growth method to fabri-
cate a MoO,/Au/MoO, transparent electrode.>®> An NIP
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structured CH3;NH;Pbl; based PVK top cell was intro-
duced for this electrode, and a 4T PVK/Si tandem solar
cell was fabricated by applying the top cell on the hetero-
junction Si bottom cell, and an efficiency of 27% was
reported. Jaysankar et al introduced an Al,O5 passivation
layer using an ALD process between the PVK layer based
on Csy15(CHsNH,)g55Pb(Iy.71Bro29); and the spiro layer
used as hole transport layer (HTL).*” By minimizing the
nonradiative recombination of the PVK top cell with a
1.72 eV bandgap, open-circuit voltage (V,.) deficit was
reduced, and a high V. value of 1.22 V was obtained. A
4T PVK/Si tandem solar cell was fabricated by applying
the top cell with an Al,O; passivation layer on top of the
IBC bottom cell and reported efficiencies of 27.1%
(0.13 cm?) and 25.3% (4 cm?). Aydin et al introduced a
Zr-doped indium oxide (IZRO) transparent electrode,
which has a better near-infrared response than the com-
mercially used ITO.*" This was applied to a CH;NH;PbI-
based PVK top cell with an NIP structure and placed on a
heterojunction Si bottom cell to make a 4T PVK/Si tan-
dem solar cell and reported an efficiency of 26.2%.
Gharibzadeh et al fabricated an NIP structured PVK top
cell based on (FAq33Cso.17Pb[I; _ ,Br,]5) with a bandgap
of 1.65 eV <E, < 1.85¢eV.* In addition, by introducing
2D/3D PVK hetero-structure passivation to the top cell,
Vo of about 45 mV was increased. This top cell was
applied to the IBC bottom cell to make a 4T PVK/Si tan-
dem solar cell and reported an efficiency of 25.7%.
Rohatgi et al pointed out the existing high-cost hetero-
junction Si sub-cell and fabricated a tunnel oxide passiv-
ated contact (TOPCon) sub-cell, which has higher
commercialization potential than the heterojunction Si
cell.*® A CsgosFAgsMAg 15Pbl, 5sBrg 45 based PVK top cell
of PIN structure was placed on top of the TOPCon bot-
tom cell to make a 4T PVK/Si tandem solar cell and
reported an efficiency of 26.7%. Dewi et al compared the
previously reported filtered-based measurement method
with a size matching scheme using a mask and men-
tioned the importance of optimal measurement
schemes.”™ In the case of 4T PVK/Si tandem solar cells
measured by this analysis method the efficiencies, 24.7%
and 23.5%, respectively, showed a difference of approxi-
mately 1%.

The analysis of the flow of 4T PVK/Si tandem solar
cell research that has been carried out so far (Figure 3
and Table S1) shows that it has the advantage of simply
applying it to the previously optimized Si solar cell by
making a PVK top cell with excellent long-wavelength
transmittance. However, there is an air gap in the path
where the light source passes through the PVK top cell
and is transmitted to the Si bottom cell. This air gap cau-
ses a difference in refractive index between the PVK top
cell and the Si bottom cell. In other words, optical loss
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due to the difference in refractive index is a major cause
of low efficiency. Therefore, in order to overcome the
limitation of the efficiency of the 4T tandem solar cell, it
is necessary to minimize the optical loss by reducing the
parasitic absorption of each functional layer. In addition,
there is a need for an interfacial layer technology capable
of minimizing optical loss that can replace the air gap
between the PVK top cell and the Si bottom cell.

2.2 | Monolithic 2-terminal PVK/Si
tandem solar cell

The monolithic 2-terminal (2T) tandem solar cell has the
advantage of less parasitic absorption, as it is a simple
integrated type without additional glass substrate and
thick transparent electrode for PVK top cell, but sophisti-
cated technologies such as process optimization and cur-
rent matching technology are required (Figure 1A)."
Additionally, the cost of the glass substrate and thick
transparent electrode of 4T tandem solar cells is also a
drawback in commercialization compared to 2T tandem
solar cells.”" In order to maximize the efficiency of a 2T
tandem solar cell, it is necessary to maximize the effi-
ciency of each top and bottom cell at the matching point
of current and voltage. The highest theoretical 2T tandem
solar cell has a PCE of 45.7% (Figure 1D)."> Among 2T
tandem solar cells, the reason why PVK/Si tandem solar
cell research is growing rapidly is that PVK thin films are
easier to adjust the bandgap and thickness than other
thin films.>* That is, when a PVK thin film is applied as
the top cell of a tandem device by using the specificity of
such a PVK thin film, it is advantageous for the current
matching of a tandem solar cell. To fabricate a 2T PVK/Si
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tandem solar cell

tandem solar cell, the polarity of the PVK top cell and Si
bottom cell should be matched, and a semi-transparent
PVK solar cell with high transparency in the near-
infrared region should be fabricated directly on the Si
bottom cell.*® A typical 2T PVK/Si tandem solar cell
design with a PVK top cell based on a Si solar cell is as
follows. There are NIP structured PVK top cell/n-Si based
homojunction Si bottom cell (Figure 2E),>® PIN struc-
tured PVK top cell/p-Si based homojunction Si bottom
cell (Figure 2F),>* NIP structured PVK top cell/n-Si based
heterojunction Si bottom cell (Figure 2G)> and PIN
structured PVK top cell/n-Si based heterojunction Si bot-
tom cell (Figure 2H).>® As the advantages of Si and PVK
solar cells, the following 2T PVK/Si tandem solar cells
are rapidly being studied.

Representative 2T PVK/Si tandem solar cells based on
an NIP structured PVK top cell and n-type homojunction
Si bottom cell are described in this section. Mailoa et al*’
developed the first monolithic 2T PVK/Si tandem solar
cell using an NIP structured CH;NH;PbI;-based PVK top
cell and an n-Si homojunction Si lower cell, resulting in
an efficiency of 13.7%. Werner et al introduced
homojunction Si capable of high-temperature heat treat-
ment of TiO,, which was used in the high-efficiency NIP
PVK solar cell process.”® In addition, by introducing a
zinc tin oxide layer as a recombination layer, it was
shown that the device was driven even after a 500°C heat
treatment process. A 2T PVK/Si tandem solar cell was
fabricated with this top cell and a bottom cell, and an
efficiency of 16% was reported. Wu et al mentioned the
merits of Si homojunction solar cells made by high-
temperature processes, which are the mainstream in the
existing solar cell market, and developed an n-Si-based
homojunction PERL cells that maximize the long-
wavelength absorption by controlling the refractive index
of SiN,.>® A 2T PVK/Si tandem solar cell was fabricated
by applying a PVK top cell based on NIP structure
Cs0.07Rbp.03FAg.76sM A 135PbL, 5sBro4s to the PERL bot-
tom cell, and an efficiency of 22.5% was reported. Zheng
et al demonstrated that SnO,, which is used as an ETL in
an NIP PVK top cell capable of low-temperature
processing, can be introduced into a cell of n-Si
homojunction PERL structure without a recombination
layer.®® Zheng et al applied SnO, as an ETL in an NIP
CH;NH;Pbls-based PVK top cell capable of low-
temperature processing. This top cell was introduced on
a cell with an n-Si homojunction PERL structure without
an ITO layer, and the current matching point was deter-
mined by adjusting the thickness of CH;NH;Pbl;. In
addition, the V. was also increased by heavy doping of
the emitter of the Si bottom cell. The efficiencies of 2T
PVK/Si tandem solar cells using these technologies were
reported to be 20.5% at 4 cm” and 17.1% at 16 cm”. Zheng
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et al introduced (FAPbI;), 53(MAPbBr3),17 and applied it
to an n-Si-based homojunction Si solar cell with back
side-texturing and reported efficiency of 21.8% at 16 cm®
by introducing a new metal grid design.®’ Shen et al
introduced TiO, ETL using the ALD process in
Csg.05sRbg 0sFAg.76sMAg 135PbI, ssBrg 45 based PVK solar
cell with an NIP structure.®® An efficiency of 24.1% was
reported by developing a 2T PVK/Si tandem solar cell
that minimized optical loss by introducing a TiO, layer
using ALD in an n-Si-based homojunction Si lower cell.
Zhu et al optimized high-quality PVK films by adjusting
the ratio of N,N-dimetylformamide to dimethyl sulfoxide.
A 2T PVK/Si tandem solar cell was fabricated with an NIP
FAMACs PVK top cell with a high-quality PVK film and
an n-Si heterojunction bottom cell.”® As a result, the effi-
ciency of the tandem solar cell was 22.80%. Zheng et al
developed an ARC film that reduced optical loss and
improved UV stability by applying a down-shifting mate-
rial.>® The 2T PVK/Si tandem solar cell was fabricated with
an NIP structured PVK top cell and an n-Si homojunction
bottom cell and reported an efficiency of 23.1%.
Representative 2T PVK/Si tandem solar cells based on
an PIN structured PVK top cell and p-type homojunction
Si bottom cell can be described as follows. Kanda et al
deposited a transparent electrode on the opposite ends of
the CH;NH;Pbl;-based PVK top cell and the p-Si
homojunction Si bottom cell, and made a 2T PVK/Si tan-
dem solar cell by mechanically contacting it to face each
other and reported efficiency of 13.7%.°* Hoye et al
pointed out the possibility of commercialization of n-type
Si solar cells used in tandem solar cells based on Si solar
cells accounts for only 5% of the global solar cell mar-
ket.® Using an PIN structured CH;NH;Pbl;-based PVK
top cell, a 2T PVK/Si tandem solar cell was fabricated
using a p-type Si-based bottom cell, and an efficiency of
16.2% was reported. Kanda et al reported efficiency of
15.5% by making a 2T PVK/Si tandem solar cell by
mechanically contacting a CH3;NH;Pbls;-based PVK top
cell with a p-Si-based homojunction Si bottom cell that
has increased efficiency through process optimization.®®
Based on the p-Si-based Al-BSF homojunction bottom
cell, a mainstream of the solar cell market, a
(FAPDbI;), s(MAPDbBr3),, based PVK solar cell with an
PIN structure, which has an HTL with an optimal band
alignment, was tuned. As a result, the efficiency of the 2T
PVK/Si tandem solar cell was 21.19%. Kanda et al intro-
duced the texture of the bottom Si solar cell by adjusting
the thickness of the PVK thin film of an NIP structured
CH;NH;Pbl;-based PVK solar cell and reported efficiency
of 15.9% by mechanically contacting it.>* Choi et al devel-
oped a transparent conductive adhesive to mechanically
bond the existing high-efficiency NIP structured PVK top
cell and a p-Si-based Al-BSF homojunction bottom cell,
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which occupies the mainstream of the Si solar cell mar-
ket.®” In addition, a 2T PVK/Si tandem solar cell was fab-
ricated based on an optical design that optimized the
current density of a tandem solar cell in consideration of
the refractive index of each layer, and an efficiency of
19.40% was reported.

Representative 2T PVK/Si tandem solar cells based on
an NIP structured PVK top cell and an n-type hetero-
junction Si bottom cell are as follows. Werner et al fabri-
cated an NIP structured CH;NH;Pbls-based PVK top cell
that minimized the light absorption by controlling the IZO
thickness used as the recombination layer and the spiro-
OMEeTAD thickness of the HTL.®® The 2T PVK/Si tandem
solar cell made of this top cell on an n-Si heterojunction Si
bottom cell reported efficiencies of 21.2% (0.17 cm®) and
19.2% (1.22 cm?). Albercht et al introduced SnO, ETL for
low-temperature processing because the TiO, ETL layer
used in an NIP structured PVK solar cell requires high-
temperature heat treatment.®® In this case, the passivation
quality of the high-efficiency n-Si heterojunction Si bottom
cell is degraded. This NIP structured CH;NH;Pbl;-based
PVK top cell was applied to an n-Si heterojunction Si bot-
tom cell, and an efficiency of 18% was reported. Werner
et al introduced an n-Si heterojunction bottom cell with a
rear texture introduced to increase long-wavelength
absorption and applied this to an NIP structured
CH;NH;Pbl;-based PVK top cell to fabricate a 2T PVK/Si
tandem solar cell and reported an efficiency of 20.5%.*
Bush et al introduced an PIN structured PVK solar cell
with a wide bandgap using cesium formamidinium lead
halide PVK and introduced a SnO, based buffer layer
through ALD with minimized parasitic absorption, and
showed excellent long-term stability.”® A 2T PVK/Si tan-
dem solar cell in which the top cell was introduced on an
infrared-tuned n-Si heterojunction bottom cell was fabri-
cated and reported efficiency of 23.6%. Fan et al made all
of the NIP structure-based PVK by solution process.”*
MAy 52FA¢.48PbI3.037B10.063, MAg 38FA¢.41CS0.21PbI; 64Br0 36,
MAy 37FA0.48CS0.15Pbl, 01Bro 9o PVK films, with bandgaps
of 1.55, 1.61, and 1.69 eV respectively, were applied to an
n-Si-based heterojunction Si bottom cell, and an efficiency
of 20.57% was reported. Zhu et al introduced a transparent
conducting oxide (TCO) layer that minimized the thick-
ness of the MoO, buffer layer and minimized the
sputtering power condition to obtain high transmittance
and applied it to a PVK top cell with an NIP structure.”?
This top cell was applied to an n-Si based heterojunction
Si bottom cell to fabricate a 2 T PVK/Si tandem solar cell.
An efficiency of 18.81% was reported without the ARC
film. Qiu et al introduced a low-temperature process, with
SnO, ETL and FApsMAg3sCso12Pbl04Brogs having a
bandgap of 1.69 eV, to fabricate an NIP structured PVK
solar cell.”” The solar cell was tandemized by applying the
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layers to an n-Si-based heterojunction bottom cell, and an
efficiency of 22.22% was reported. Sahli et al pointed out
that recent 2T PVK/Si tandem solar cells use a TCO-based
recombination layer that induces optical loss and reduces
shunt resistance.”® To solve this problem, a nanocrystalline
Si oxide interlayer was introduced and the current density
of the lower cell increased by 1 mA/cm?® The 2T PVK/Si
tandem solar cells which have an NIP structured PVK top
cell with cesium-based PVK and an n-Si heterojunction
bottom solar cells with nanocrystalline Si oxide interlayer,
reported efficiencies of 22.0% at 0.25 cm® and 21.2% at
1.43 cm?. Stannowski et al maximized the light absorption
of the n-Si heterojunction bottom cell by inserting a nano-
crystal Si oxide interlayer with a controlled refractive index
between the ITO and Si layers.”” A 2T PVK/Si tandem
solar cell was fabricated by applying an NIP-structured top
cell with FA(3CsysMA, sPb(LBr; _,); to the bottom cell,
and an efficiency of 23.5% was reported. Bush et al proved
that the pyramidal textured polydimethylsiloxane (PDMS)
film exhibits a much better anti-reflection film effect than
MgF,, which was mainly used as an anti-reflection film
layer in tandem solar cells.”® The 2T PVK/Si tandem solar
cells, which have FAg75Cso,sPb(IoBrg2)s based PVK top
cell with an PIN structure and an n-Si heterojunction bot-
tom cell reported an efficiency of 25%. For the first time,
Sahli et al reported efficiency of 25.2% by tandemizing an
PIN structure PVK top cell through hybrid-type vacuum
deposition on an n-Si-based double-sided textured hetero-
junction bottom solar cell.”” Jost et al reported an effi-
ciency of 25.5% by applying a textured light management
foil to a 2T PVK/Si tandem solar cell, which has a
Cs0.0s(MAg 17F A g3)Pb; 1(Ip 33B1o.17); based PVK top cell
with an PIN structure and an n-Si heterojunction bottom
cell.”® Hou et al fabricated an NIP structured PVK top cell
using Cs to reduce the roughness of the FAMA-based PVK
surface.” In addition, the V. of the n-Si heterojunction Si
bottom cell was increased by optimizing the minority car-
rier lifetime by controlling the silane dilution ratio vs
hydrogen. These cells were tandemized, and an efficiency
of 20.43% was reported. Kim et al designed an optimized
monolithic 2T PVK/Si tandem solar cell by considering
each functional layer based on optical simulation.>* Hou
et al optimized the pyramid size of the pyramidally tex-
tured PDMS ARC film.*® An efficiency of 21.93% was
reported by applying an optimized ARC film by making a
2T PVK/Si tandem solar cell with an NIP structured PVK
top cell and an n-Si heterojunction bottom cell. Kamino
et al developed a low-temperature silver grid screen print-
ing technology to replace the high-temperature screen
printing technology used in the industry.®" This technique
was applied to a 2T PVK/Si tandem solar cell in which the
n-Si heterojunction bottom cell and the Csg17FAggs
Pblyg3Brp 17 based PVK top cell with an PIN structure

were tandemized, and 22.6% efficiency was reported at
57.4 cm®. Park et al reported efficiency of 23.5% by opti-
mizing the current matching of tandem solar cells using a
3T EQE analysis method and applying a CH;NH;3Pbl;
based PVK top cell with an PIN structure to an n-Si het-
erojunction bottom cell.** Kohnen et al found that fill fac-
tor changes due to current mismatch in the 2T PVK/Si
tandem solar cells.?> In consideration of this, the
Csp.05(MAg g3FAg 17)Pb(Iy g3Brg.17); based PVK top cell with
an PIN structure and an n-Si heterojunction bottom cell
were tandemized, and an efficiency of 25.0% was reported
by minimizing the current mismatch. Nogay et al and
Mazzarella et al reported an efficiency of 25.2% by
adjusting the refractive index of nanocrystal Si-oxide to
increase the absorption of long wavelengths of the n-Si
heterojunction bottom cell, and tandemizing the PIN PVK
top cell.’*® Chen et al reduced the V. deficit to 0.49 to
0.51 V through grain engineering that introduced MACI
and MAH,PO, into the PVK thin film.** This technology
was applied to Csg5(FAos3MAg17)0ssPb(lo7Bros)s based
PVK top cell with an PIN structure, and was tandemized
with an n-Si heterojunction bottom cell, resulting in an
efficiency of 25.4%. Hou et al, for the first time, demon-
strated a tandem solar cell with a solution-process-based
PVK top cell on the surface of a pyramid-textured Si bot-
tom cell by adjusting the size of the texture pyramid on
the surface of an existing industrial Si solar cell.*® In addi-
tion, 1-butanethiol was introduced to overcome the limit
of charge collection of the micro-thick PVK film formed
on the pyramid texture surface, which increased the diffu-
sion length, and prevented phase segregation. An effi-
ciency of 25.7% was reported by tandemizing the
Csp0sMAg 15FAgPbl, ,sBrg 75 PVK top cell with an PIN
structure, which has these technologies and an n-Si het-
erojunction bottom cell. Xu et al introduced triple-halide
alloys using chlorine, bromine, and iodine to reduce the
Voo deficit caused by photo-induced phase segregation of
wide band-gap PVK solar cells.*® An efficiency of 27% was
reported by tandemizing an PIN structured PVK top cell
that applied this technology and an n-Si heterojunction
bottom cell. Chen et al reduced the pyramid texture size
and introduced a nitrogen-assisted blading process to suc-
cessfully coat PVK with a thickness of 0.5 to 1 pm.*” This
technique was applied to an PIN structured PVK top cell
and tandemized with an n-Si heterojunction bottom cell to
report an efficiency of 26.2%. Kim et al fabricated a PVK
top cell with 20.7% efficiency in 1.7 eV bandgap through
anion engineering of phenethylammonium-based two-
dimensional additives.®® This was applied to an PIN struc-
tured PVK top cell and applied to the n-Si heterojunction
bottom cell, and an efficiency of 26.7% was reported.

The 2T tandem solar cells based on an PIN structured
PVK top cell and p-type heterojunction Si bottom cell are
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described as follows. A double-sided textured p-Si hetero-
junction bottom cell was fabricated and tandemized with
a PVK top cell with an PIN structure using a hybrid vac-
uum deposition process to report an efficiency of 25.1%.%

Recently, research on 2T PVK/Si tandem solar cells
has developed rapidly, and many results have been
reported in a short period of time. When the general tan-
dem solar cell is divided into large and small areas based
on 1 cm” (Figure 4A,B and Table S2), the largest area of
reported PVK/Si tandem solar cell is 57.4 cm®® This
showcases the importance of a large area technology for
PVK top cells because it is considerably smaller than the
area of a commercial silicon solar cell. The next chapter
will introduce the fabrication process and electrode
design of PVKs for large areas considering optical and
electrical losses.

3 | SOLUTION AND
EVAPORATION PROCESS FOR
LARGE-SCALE PVK LAYER
DEPOSITION

Among the solution processes such as spin coating, spray
coating, slot-die coating, and the spin coating has been
widely used for the deposition of PVK layers because of
the easy control of the chemical composition and thick-
ness to optimize PVK solar cells. In particular, the effi-
ciency of PVK solar cells fabricated through spin coating
began to increase rapidly after the advent of the anti-
solvent dropping method, resulting in high-quality,
dense, and pinhole-free PVK films.** However, in large-
scale film coatings, spin coating is expensive because the
material utilization rate is too low, and the spin coater is
expensive to spin heavy substrates at high rotation
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speeds. In addition, nonuniform and insufficient anti-
solvent coverage in PVK samples has made it difficult on
a large scale to obtain high-quality, high-density, and
pinhole-free PVK films with the anti-solvent dropping
method. Unlike a spin coating, other solution processes
such as spray coating, slot-die coating, and blade coating
are suitable for large-scale PVK film deposition because
they are easy to scale-up with continuous coating and
have high material utilization (Figure 5).°°> However,
many processing factors such as precursor, solvent, coat-
ing speed, and heating temperature must be optimized to
achieve the same PVK film quality by spin coating. Zuo
et al introduced a blow-assisted drop-casting method for
MAPDI; films in air and achieved a champion PEC of
15.57% through a slot-die coating method with NH,CI
additive to optimize the morphology of PVK films.”* Cot-
ella et al achieved a PCE of 9.2% by controlling the crys-
tallization of PVK films using a slot die coating method
with a preheated substrate and cold air knife.”> Ulicna
et al investigated PVK film morphology through a spray-
coating process and anti-solvent dipping methods,
resulting in a PCE of 17.29%.”* Park et al developed a
reproducible megasonic spray-coating method for
MAPDI; film formation. With megasonic spray-coating,
PVK films were prepared at low temperature with an
anti-solvent-free process, resulting in a PCE of 14.2% in a
1 cm? active area.”® Recently, a high-efficiency PVK solar
module using a large-scale solution process rather than
spin coating has been reported through process factor
optimization and the development of a new method. Cur-
rently, 11.1% PCE of 168.75 cm? PVK module and 16.9%
PCE of 63.7 cm? size by slot-die coating and blade coating
have been reported, respectively.”®°” The previous results
are quite promising, but the PVK compositions are both
simple MAPbI;, and control of PVK composition in a
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large-scale solution process is required to optimize the
bandgap of PVK and increase the efficiency of PVK/Si
tandem solar cell.

While the solution process has been mainly used for
PVK layer coating until now, the evaporation process for
PVK layer coating is also continuously being studied
because the evaporation process provides highly uniform
and pinhole-free films even in a large area
(Figure 6).*1% Basically, organometal halide PVKs are
chemical compounds that are usually synthesized by the
reaction of metal halides with organic ammonium
halides. As organometal halide PVK easily decomposes at
high temperature and vacuum conditions, instead of
evaporating organometal halide PVK itself, the two com-
ponents of organometal halide PVK evaporate to form a
PVK layer. There are two common ways to evaporate two
components of PVK: one is a one-step co-evaporation
method, and the other is a two-step sequential evapora-
tion method. However, the vapor pressure of organic
ammonium halides under vacuum conditions is so high
that unstable vacuum deposition and the absence of sol-
vent that helps the reaction between the two components
have hindered the achievement of a high-quality PVK
layer during the evaporation process. At first time, the
hybrid process that using evaporation process for inor-
ganic components and solution process for organic com-
ponents on inorganic components were introduced for
large-scale PVK/Si tandem solar cells.®*”*”” This hybrid
process has advantages of both evaporation process and
solution process, which shows uniform and pinhole-free

PVK films with easy control of chemical composition.
However, in-line process for mass production is not pos-
sible in hybrid process and optimization of both evapora-
tion process and solution process is too complex. In order
to overcome the limitations of hybrid process, all evapo-
ration process for large-scale PVK layer deposition has
been researched continuously. Zheng et al studied the
effect of solvent annealing on grain growth in 2D PVKs
prepared by single-source thermal evaporation, and
through solvent annealing, the crystallinity of 2D PVKs
was improved, and a PCE of 4.67% was achieved.'”’ Lei
et al first formed a Pbl, layer by normal evaporation and
then fabricated MAI by flash evaporation to obtain a
homogeneous large-scale PVK film. All evaporated PVK
devices achieved a champion PCE of 15.06% at 16 cm>
active area.'®> By optimizing the evaporation process
parameters such as deposition rate, substrate tempera-
ture, chamber pressure, etc., PCEs of more than 20% have
recently been reported with co-evaporated PVK layers.'*
Moreover, 18.13% PCE of a 21 cm? PVK module by co-
evaporation method was reported.'® However, to opti-
mize the bandgap of PVK and increase the efficiency of
PVK/Si tandem solar cells, uniformity and control of
PVK composition in large-scale evaporation processes are
also required. Notably, newly developed evaporation pro-
cesses, such as flash evaporation and closed-space vapor
transport, can be an innovative breakthrough to over-
come the decomposition problem of PVK materials.'>1%
Applying a newly developed evaporation process and
optimizing the parameters in the evaporation process will
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FIGURE 6 Schematic

illustration of (A) PVK co-
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enable uniform single-source deposition of PVK composi-
tion optimized for PVK/Si tandem solar cells.

4 | CHALLENGES AND PROGRESS
IN LARGE-SCALE PVK/Si TANDEM
SOLAR CELLS

Undoubtedly, a high-quality and pinhole-free PVK layer
by the scalable deposition process mentioned above is
necessary for efficient large-scale PVK/Si tandem solar
cells. However, it is not the only obstacle to scale up
PVK/Si tandem solar cells. The first step to consider in
large-scale PVK/Si tandem solar cells is the recombina-
tion layer. In the 2T monolithic PVK/Si tandem solar cell,
the vertical resistance of the recombination layer should
be low enough to connect the bottom and top cells with-
out resistance loss, and the TCOs were utilized as recom-
bination layers owing to their intrinsic high transparency
and low resistance. However, defects in the PVK layer or
charge transport layers (CTL) are inevitable in large-scale
PVK/Si tandem solar cell fabrication, and the shunting
effect due to pinholes and defects is important for the
failure of large-scale PVK/Si tandem solar cells. To pre-
vent the failure of large-scale PVK/Si tandem solar cells,
it is necessary to increase the lateral resistance of the
recombination layer to localize the shunting effect and
minimize leakage current. An important step for large-
scale PVK/Si tandem solar cells is the development of a
high lateral resistance recombination layer (Figure 7). In
PVK/Si tandem solar cells 19.1% PCE of 12.96 cm* was
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achieved using p+/n+ hydrogenated nanocrystalline sili-
con recombination junction deposited by plasma-
enhanced chemical vapor deposition instead of TCO.” In
addition, 17.6% PCE of 16 cm? PVK/Si tandem solar cell
was achieved through the optimized conductivity of
recombination layer formed by the combination of a
doping-level control emitter and a solution-processed
charge-selective metal oxide nanoparticle layer.®

However, the lateral resistance of the transparent
electrode should be low to collect the generated charge
carrier efficiently to the external circuit without loss,
while the lateral resistance of the recombination layer
should be low in large-scale PVK/Si tandem solar cells.
After the introduction of a metal-oxide-based sputtering
damage buffer layer, TCOs with high transparency and
conductivity were sputtered as the top transparent elec-
trode of PVK/Si tandem solar cells, but TCO itself has
limitations as the top transparent electrode that conflicts
with electrical conductivity and transparency.

To overcome the limitations of TCO itself, the sheet
resistance of the transparent electrode was effectively
reduced by using a metal grid on top of TCO. To obtain a
low resistance of a transparent electrode with a metal
grid, a metal with low resistivity, a short distance
between the metal fingers, and a large cross-sectional
area of the metal finger are desirable. However, the light-
shading loss caused by the top surface of the metal grid
prevents light from entering the solar cell and limits the
increase in efficiency by introducing a metal grid. There-
fore, for efficient large-scale PVK/Si tandem solar cells,
optimal metal grid design, and metal finger height-to-
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width aspect ratio (geometry) are required (Figure 8). It
was reported that the PCE of a PVK/Si tandem solar cell
with 16 cm? size increased from 17.6 to 21.8% after metal
grid design optimization.®>®' It was also reported that
shading loss decreased to less than 0.8% after increasing
the metal finger aspect ratio using a graded-opening
shadow mask.*®

5 | OBSTACLES FOR
COMMERCIALIZATION AND
OUTLOOK

Recently, the record efficiencies of 2T PVK/Si tandem
solar cells are expected to exceed 30%, and the area of
large-scale PVK layer deposition process has become
large enough to cover the size of commercial silicon solar
cell wafers. Although the efficiency of 2T PVK/Si tandem
solar cells is higher than 29%, which is the theoretical
limit of Si single-junction solar cells, and the rapid devel-
opment of large-scale deposition processes for PVK layers
are promising, the cost of PVK/Si tandem solar cells
should be considered for commercialization. According
to the recently reported cost analysis for PVK solar cells
and PVK/Si tandem solar cells, the process equipment
and maintenance costs of the evaporation process may be
low with high throughput in mass production. PVK solar
cells have generally reported high material cost issues
rather than processing costs in cost analysis. In

particular, the cost barrier of PVK solar cells is identified
by expensive organic charge transport materials such as
spiro-OMeTAD, PTAA, and PCgBM.'*”'% The cost of
high-performance organic charge transport materials is
usually expensive owing to the complex synthesis steps
and additional cost for ultra-high purity. As an alterna-
tive, the cost of inorganic charge transport materials such
as NiO, CuSCN, SnO,, and Nb,0Os is much cheaper than
organic materials, and several large-scale compatible
processed inorganic CTLs have been reported in PVK
solar cells (Figure 9A).M1%113

From the perspective of eco-friendly renewable
energy, it is necessary to solve the toxicity and longevity
of PVK/Si tandem solar cells, which are the drawbacks of
PVK, to gain an advantage over other energy sources.
Most PVK solar cells are based on toxic lead (Pb) due to
their excellent optoelectronic properties. Although the
total amount of Pb in PVK/Si tandem solar cells is very
low, it has been reported that the Pb of halide PVK is
10 times more dangerous than the Pb that already exists
on the earth.'* To lower its toxicity, Pb-free and less-Pb
PVK based solar cells have been researched using safe tin
(Sn)-based PVK.'*>"''7 However, Sn-based PVK solar cells
have lower efficiencies and faster degradation than Pb-
based PVK solar cells due to phase instability and easy
oxidation from Sn®* to Sn**. In addition, new approaches
have been suggested to prevent Pb leakage in PVK solar
modules by trapping Pb with cation-exchange resins con-
taining abundant and inexpensive Ca®* and Mg**.''®
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Solar cells are exposed to degradation sources such as  stability of PVK solar cells against the degradation
moisture, oxygen, heat, and ultraviolet light in actual use, sources should be further increased.'***'?! To solve the
and to ensure the long lifetime of PVK/Si solar cells, the easy decomposition of methylammonium lead triiodide

FIGURE 8 (A) Photograph of
large-scale PVK/Si tandem solar
cell with metal grid. Reproduces
with permission: Copyright 2018,
Royal Society of Chemistry.®®

(B) Photograph of large-scale
PVK/Si tandem solar cell with
optimal metal grid design.
Reproduces with permission:
Copyright 2018, American
Chemical Society.®* (C) Scheme
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FIGURE 9 (A) PVK solar cell with NiO as inorganic CTL, Reproduced with permission: Copyright 2019, John Wiley and Sons.'"
(B) Schematic side and top views of encapsulation package and photograph of PVK solar cell after encapsulation. Reproduces with
permission: Copyright 2018, Royal Society of Chemistry.'?> (C) Schematics of metal and halide diffusion in PVK solar cells with different

inorganic diffusion barrier structures. Reproduces with permission: Copyright 2018, American Chemical Society
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PVK by moisture and heat, optimized PVK compositions
were developed by mixing cations and halogen anions to
achieve high stability against moisture and heat. Unlike
thermally decomposed metylammonium lead triiodide
PVK, formamidinium lead triiodide PVK, and cesium
lead triiodide PVK showed high resistance to thermal
decomposition. By mixing the cations, the thermal stabil-
ity of PVK improved as well as crystal phase stability. For
halide anions, Bromide-based PVK showed higher stabil-
ity against moisture and heat than the iodide-based PVK,
and the PVK composition was further optimized by
mixing both halogens for better stability. Further optimi-
zation of the PVK composition by incorporating
equivalent small metal ions and forming 2D/3D
hetero-structured PVK to increase stability have been
reported."**'** Tt is well known that organic charge
transport materials are easily decomposed by moisture
and oxygen and require a high level of encapsulation.
Inorganic charge transport materials are generally advan-
tageous for stability owing to their original robust proper-
ties. Moreover, it was reported that a densely formed
inorganic layer could act as a diffusion barrier to prevent
the escape of volatiles, and the thermal stability of PVK
solar cells with an inorganic layer was significantly
improved. It was reported that a semi-transparent PVK
solar cell, with a densely formed CTL and transparent
electrode, passed the thermal cycling test, damp heat test,
and UV stress test (Figure 9B,C)."*>'%7

Although the above obstacles in the commercializa-
tion of PVK/Si tandem solar cells have been discussed in
detail in the literature and many potential solutions have
been suggested, the high processing temperature of top
metal grid metallization of conventional Si solar cells has
been overlooked. Large-scale solar cells require a low
series resistance of the top electrode, which requires met-
allization of the top metal grid. However, screen printing
that requires a high temperature of 800°C in a Si solar
cell is not possible in PVK solar cells, where conventional
silver paste metallization is susceptible to heat. In hetero-
junction Si solar cells, low-temperature plating metalliza-
tion was developed to prevent degradation of a-Si:H
based passivated contacts, but for PVK solar cells vulner-
able to moisture, the plating process immersed in a bath
with metal salt is also impossible. Although a metal grid
was formed on a PVK/Si tandem solar cell by evapora-
tion, its material utilization rate is too low, and high
usage of Ag significantly increases the total cost.
Recently, a cold metallization process suitable for PVK
solar cells was developed from low-temperature cell con-
nection technology, the so-called SmartWire Connection
Technology developed by Meyer-Burger.'*® It is a simple
lamination process between metal wire embedded poly-
mer foil and the top surface of the solar cell. Low

melting-point alloy layer coated copper wire can be used
to reduce the wire interconnection temperature to 160°C
or less. In this SmartWire Connection Technology, both
material usage and optical shading loss can be reduced in
conventional wide busbars by optimizing the grid design
and wire geometry, and further improvement of PVK/Si
tandem solar cell for commercialization should be con-
sidered in this new approach.

6 | CONCLUSION

In this review, we summarize large-scale monolithic
PVK/Si tandem solar cells with representative structures
of Si-based PVK tandem solar cells, optical and electrical
development of PVK/Si tandem solar cells, the process of
large-scale PVK solar cells, and challenges of large-scale
PVK/Si tandem solar cells. In the 4T tandem solar cell,
optical loss of tandem solar cell exists due to the air gap
between the PVK top cell and the Si bottom cell. How-
ever, as the 2T tandem solar cell is a simple integrated
type, it has the advantage of less parasitic absorption but
requires a technique such as current matching. Optical
and electrical developments have been studied to achieve
high-efficiency PVK/Si tandem solar cells. To overcome
the reduction in efficiency due to optical loss, a textured
surface is used to reduce the reflections between inter-
layers and optimize the transmittance and conductivity
of the top electrode. Meanwhile, electrical properties are
improved by many processes, such as the introduction of
a sputtering buffer layer. For the commercialization of
PVK/Si tandem solar cells, the optical and electrical
properties must be improved, and the development of a
large-scale PVK layer deposition process is critical.
Recently, the spin coating process has been widely used
in the solution process by easily controlling the chemical
composition, forming a high-quality and high-density
PVK film by anti-solvent dropping, and optimizing the
thickness and bandgap of the PVK layer. However, spin
coating is not suitable for large-scale processes. There-
fore, other solution processes, such as spray coating, slot-
die coating, and blade coating, were mainly used in
large-scale PVK solar cells. A dense and pinhole-free
PVK film can be easily formed during the evaporation
process, but the control of chemical reactions between
organic cations and metal halides is very difficult. Vari-
ous processes have been developed during the evapora-
tion process, including substrate temperature control,
flash evaporation, two-step sequential process, and prox-
imity evaporation to form high-quality PVK layers. How-
ever, in PVK/Si tandem solar cells, scale-up is not the
only obstacle, but the recombination layer resistance
control is also important. The vertical resistance should
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be low to prevent electrical loss of the recombination
layer, but the lateral resistance of the recombination
layer should be high to eliminate the shunting path. To
overcome the limitation of the TCO layer, the properties
of metal grids such as low resistivity metal, short dis-
tance between the metal fingers, and large cross-
sectional area of metal fingers are important. However,
PVK/Si tandem solar cells have to overcome several
obstacles to commercialization. The commercialization
of PVK solar cells with the high material cost is being
pointed out, and the toxicity and stability of PVK mate-
rials are critical issues for commercialization. Addition-
ally, conventional unfeasible metallization temperatures
for PVK/Si tandem solar cells are being overlooked, and
these hurdles must be overcome to commercialize
PVK/Si tandem solar cells.
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