8,100 research outputs found

    Unique Identification of Lee-Wick Gauge Bosons at Linear Colliders

    Get PDF
    Grinstein, O'Connell and Wise have recently presented an extension of the Standard Model (SM), based on the ideas of Lee and Wick (LW), which demonstrates an interesting way to remove the quadratically divergent contributions to the Higgs mass induced by radiative corrections. This model predicts the existence of negative-norm copies of the usual SM fields at the TeV scale with ghost-like propagators and negative decay widths, but with otherwise SM-like couplings. In earlier work, it was demonstrated that the LW states in the gauge boson sector of these models, though easy to observe, cannot be uniquely identified as such at the LHC. In this paper, we address the issue of whether or not this problem can be resolved at an e+ee^+e^- collider with a suitable center of mass energy range. We find that measurements of the cross section and the left-right polarization asymmetry associated with Bhabha scattering can lead to a unique identification of the neutral electroweak gauge bosons of the Lee-Wick type.Comment: 16 pages, 6 figures; discussion and references adde

    Challenges and opportunities on lipid metabolism disorders diagnosis and therapy: Novel insights and future perspective

    Get PDF
    Dyslipidemia has been globally recognized, for almost seven decades, as one of the most important risk factors for the development and complications of atherosclerotic cardiovascular disease (ASCVD) [...]

    The Role of the Metabolome and Non-Coding RNA on Pheochromocytomas and Paragangliomas: An Update

    Get PDF
    Pheochromocytoma and paragangliomas (PPGL) are rare neuroendocrine tumors. In some patients they exhibit malignant behavior characterized by the presence of metastases, limiting treatment options and survival rates. Therapeutic options are limited to surgery, localized radiotherapy, and a few systemic therapies. However, in several recent studies, non-coding RNA molecules are gaining increasing attention as markers of malignancy for PPGL. The understanding of PPGL development molecular mechanisms has improved in the last years, with some of the epigenetic regulatory mechanisms such as DNA and histones methylation, being better understood than RNA-based mechanisms. Metabolome deregulation in PPGL, with increased synthesis of molecules that facilitated tumor growth, results from the activation of hypoxia signaling pathways, affecting tumorigenesis. In addition, the assessment of these metabolites can be useful for the management of these tumors. This review summarizes recent discoveries linking metabolome and non-coding RNA to PPGL and their relevance for diagnosis and therapeutics

    Single WRW_R Production in eee^-e^- Collisions at the NLC

    Full text link
    Single WRW_R production in eee^-e^- collisions at the NLC can be used to probe the Majorana nature of the heavy neutrinos present in the Left-Right Symmetric Model below the kinematic threshold for their direct production. For colliders in the s=11.5\sqrt {s}=1-1.5 TeV range, typical cross sections of order 110fb1-10 fb are obtained, depending on the specific choice of model parameters. Backgrounds arising from Standard Model processes are shown to be small. This analysis greatly extends the kinematic range of previous studies wherein the production of an on-shell, like-sign pair of WRW_R's at the NLC was considered.Comment: 13pp, 3 figures (available on request), LaTex, SLAC-PUB-647

    CP violation at a linear collider with transverse polarization

    Get PDF
    We show how transverse beam polarization at e+ee^+e^- colliders can provide a novel means to search for CP violation by observing the distribution of a single final-state particle without measuring its spin. We suggest an azimuthal asymmetry which singles out interference terms between standard model contribution and new-physics scalar or tensor effective interactions in the limit in which the electron mass is neglected. Such terms are inaccessible with unpolarized or longitudinally polarized beams. The asymmetry is sensitive to CP violation when the transverse polarizations of the electron and positron are in opposite senses. The sensitivity of planned future linear colliders to new-physics CP violation in e+ettˉe^+e^- \to t \bar{t} is estimated in a model-independent parametrization. It would be possible to put a bound of 7\sim 7 TeV on the new-physics scale Λ\Lambda at the 90% C.L. for s=500\sqrt{s}=500 GeV and dtL=500fb1\int dt {\cal L}=500 {\rm fb}^{-1}, with transverse polarizations of 80% and 60% for the electron and positron beams, respectively.Comment: 15 pages, latex, includes 5 figures. This version (v3) corresponds to publication in Physical Review; extended version of v2 which corresponded to LC note LC-TH-2003-099 with corrected figure caption

    A review of Quantum Gravity at the Large Hadron Collider

    Full text link
    The aim of this article is to review the recent developments in the phenomenology of quantum gravity at the Large Hadron Collider. We shall pay special attention to four-dimensional models which are able to lower the reduced Planck mass to the TeV region and compare them to models with a large extra-dimensional volume. We then turn our attention to reviewing the emission of gravitons (massless or massive) at the LHC and to the production of small quantum black holes.Comment: 32 pages, invited revie

    TeV-Scale Black Hole Lifetimes in Extra-Dimensional Lovelock Gravity

    Full text link
    We examine the mass loss rates and lifetimes of TeV-scale extra dimensional black holes (BH) in ADD-like models with Lovelock higher-curvature terms present in the action. In particular we focus on the predicted differences between the canonical and microcanonical ensemble statistical mechanics descriptions of the Hawking radiation that results in the decay of these BH. In even numbers of extra dimensions the employment of the microcanonical approach is shown to generally lead to a significant increase in the BH lifetime as in case of the Einstein-Hilbert action. For odd numbers of extra dimensions, stable BH remnants occur when employing either description provided the highest order allowed Lovelock invariant is present. However, in this case, the time dependence of the mass loss rates obtained employing the two approaches will be different. These effects are in principle measurable at future colliders.Comment: 27 pages, 9 figs; Refs. and discussion adde

    Temperature chaos in a replica symmetry broken spin glass model - A hierarchical model with temperature chaos -

    Full text link
    Temperature chaos is an extreme sensitivity of the equilibrium state to a change of temperature. It arises in several disordered systems that are described by the so called scaling theory of spin glasses, while it seems to be absent in mean field models. We consider a model spin glass on a tree and show that although it has mean field behavior with replica symmetry breaking, it manifestly has ``strong'' temperature chaos. We also show why chaos appears only very slowly with system size.Comment: 7 pages, 3 figures, the text is slightly change

    Rejuvenation in the Random Energy Model

    Full text link
    We show that the Random Energy Model has interesting rejuvenation properties in its frozen phase. Different `susceptibilities' to temperature changes, for the free-energy and for other (`magnetic') observables, can be computed exactly. These susceptibilities diverge at the transition temperature, as (1-T/T_c)^-3 for the free-energy.Comment: 9 pages, 1 eps figur
    corecore