Grinstein, O'Connell and Wise have recently presented an extension of the
Standard Model (SM), based on the ideas of Lee and Wick (LW), which
demonstrates an interesting way to remove the quadratically divergent
contributions to the Higgs mass induced by radiative corrections. This model
predicts the existence of negative-norm copies of the usual SM fields at the
TeV scale with ghost-like propagators and negative decay widths, but with
otherwise SM-like couplings. In earlier work, it was demonstrated that the LW
states in the gauge boson sector of these models, though easy to observe,
cannot be uniquely identified as such at the LHC. In this paper, we address the
issue of whether or not this problem can be resolved at an e+e− collider
with a suitable center of mass energy range. We find that measurements of the
cross section and the left-right polarization asymmetry associated with Bhabha
scattering can lead to a unique identification of the neutral electroweak gauge
bosons of the Lee-Wick type.Comment: 16 pages, 6 figures; discussion and references adde