48 research outputs found

    The influence of Indian summer monsoon on the climatic regime of Eastern Mediterranean

    Get PDF
    The objective of this study is to further investigate the ISM impact on the temperature and wind regime of the Eastern Mediterranean region, with the aid of multivariate statistics. For this purpose, the standardized Dynamic Indian Monsoon Index by Wang and Fan (1999) was used for a period of 44 years (1958-2001) along with ERA40 Reanalysis data, including monthly means of surface air temperature and wind at 850hPa with a horizontal resolution of 0.25° latitude x 0.25° longitude. Initially, the correlation maps of the seasonal anomalies of the two variables upon ISM index are computed and subsequently Empirical Orthogonal Function Analysis (EOF) is carried out on individual fields. Under this framework, correlation coefficients between the derived EOF amplitudes and ISM index are calculated and in order to validate the results from the first method, the EOF modes that exhibit high correlation coefficients are compared to the aforementioned correlation patterns. Our results verify that there is correlation between Indian monsoon and the etesian pattern over the Aegean Sea

    Water4Cities: An ICT platform enabling Holistic Surface Water and Groundwater Management for Sustainable Cities

    Get PDF
    To enable effective decision-making at the entire city level, both surface water and groundwater should be viewed as part of the extended urban water ecosystem with its spatiotemporal availability, quantity, quality and competing uses being taken into account. The Water4Cities project aims to build an ICT solution for the monitoring, visualization and analysis of urban water at a holistic urban setting to provide added-value decision support services to multiple water stakeholders. This paper presents the main stakeholders identified, the overall approach and the target use cases, where Water4Cities platform will be tested and validated

    Programmable Edge-to-Cloud Virtualization for 5G Media Industry: The 5G-MEDIA Approach

    Get PDF
    To ensure high Quality of Experience (QoE) for end users, many media applications require significant quantities of computing and network resources, making their realization challenging in resource constrained environments. In this paper, we present the approach of the 5G-MEDIA project, providing an integrated programmable service platform for the development, design and operations of media applications in 5G networks, facilitating media service management across the service life cycle. The platform offers tools to service developers for efficient development, testing and continuous correction of services. One step further, it provides a service virtualization platform offering horizontal services, such as a Media Service Catalogue and accounting services, as well as optimization mechanisms to flexibly adapt service operations to dynamic conditions with efficient use of infrastructure resources. The paper outlines three use cases where the platform was tested and validated

    Towards Serverless NFV for 5G Media Applications

    Get PDF
    The advent of virtualization and IaaS have revolutionized the telecom industry via SDN/NFV. A new wave of cloud-native PaaS promises to further improve SDN/NFV performance, portability, and cost-efficiency. In this poster, we highlight a work in progress being done in the 5G-MEDIA project [2], which pioneers the application of the serverless paradigm to NFV in the context of media intensive applications in 5G networks. Motivational use cases include tele-immersive gaming, mobile journalism and UHD content distribution. For example, consider a next-gen e-sport, in which bouts between gamers last only a few minutes. FaaS offers a clear cost-efficiency benefit for hosting such applications. An architecture is shown in Fig. 1. It includes i) an Application/Service Development Kit (SDK) to enable access to media applications development tools; ii) a Service Virtualization Platform (SVP) to run the ETSI MANO framework, the Media Service MAPE optimization component and the VIM and WIM plugins to enable NFVIs integration; iii) different NFVIs to execute media-specific VNFs. FaaS VIM is implemented for integration of FaaS with the rest of the MANO stack. It allows mixing FaaS and "regular" VNFs within the same media forwarding graph. For reference implementation, Apache OpenWhisk [1] and Kubernetes are used. The main challenge is extending the programming model to support groups of actions communicating over a network, while retaining the simplicity of FaaS

    A service platform architecture enabling programmable edge-to-cloud virtualization for the 5G Media industry

    Get PDF
    Media applications are amongst the most demanding services in terms of resources, requiring huge network capacity for high bandwidth audio-visual and other mobile sensory streams. The 5G-MEDIA project aims at innovating media-related applications by investigating how these applications and the underlying 5G network should be coupled and interwork to the benefit of both. The 5G-MEDIA approach aims at delivering an integrated programmable service platform for the development, design and operations of media applications in 5G networks by providing mechanisms to flexibly adapt service operations to dynamic conditions and react upon events (e.g. to transparently accommodate auto-scaling of resources, VNF replacement, etc.). In this paper we present the 5G-MEDIA service platform architecture, which has been specifically designed to enable the development and operation of services for the nascent 5G media industry. Our approach delivers an integrated programmable service platform for the development, design and operations of media applications in 5G networks

    A prototypical non-malignant epithelial model to study genome dynamics and concurrently monitor micro-RNAs and proteins in situ during oncogene-induced senescence

    Full text link

    Relationship between the Indian summer monsoon and the large-scale circulation variability over the Mediterranean

    No full text
    In this study the impact of the Indian summer monsoon on the large scale variability of the atmospheric circulation over the Mediterranean is investigated on an inter-annual time scale. Composite and correlation analysis results are presented, outlining different circulation patterns in the upper and lower troposphere for strong and weak monsoon years respectively. For this purpose ERA-40 Reanalysis monthly mean data at various isobaric levels together with the standardized All India Rainfall Index for boreal summer (June-July-August-September) of a 44-year period were employed. During strong monsoon years many atmospheric circulation systems appear strengthened over Eurasia, resembling a well-organized Rossby wave train over the area. In the upper troposphere a meridional shift of the jet streams over the examined area was also identified during extreme monsoon years. On the other hand, in the lower troposphere enhanced northerlies (Etesians) appear to dominate over Eastern Mediterranean along with intensified subsidence during strong monsoon years. © 2014 Elsevier B.V

    Large scale variability associated with Indian summer monsoon

    No full text
    The objective of this study is the investigation of the large scale variability of the atmospheric circulation over the Mediterranean region in relation to the Indian summer monsoon. For this purpose composite anomalies of selected fields at various isobaric levels are analyzed for strong versus weak monsoon years. Gridded, monthly mean data, such as geopotential height, horizontal wind components, vertical velocity and relative vorticity at 300 hPa were used, as obtained from the ERA-40 Reanalysis Data Base, with 2.5 2.5 resolution for the boreal summer (June-September) and for a 44-year period (1958–2001). The standardized Dynamic Indian Monsoon Index by Wang and Fan (1999) was employed to determine the strong and weak monsoon years in the 44-year period. It was found that there are significant differences between strong and weak composites for all fields, especially in the upper troposphere. The results suggest that these differences may be related to the existence of Rossby wave trains as well as to the intensity and the meridional shift of the upper-level jet streams

    A statistical investigation of the impact of the indian monsoon on the eastern mediterranean circulation

    No full text
    The Indian summer monsoon (ISM) is a prominent feature of the summer circulation in the Northern Hemisphere (NH) and has been found to modulate the weather and climate conditions in many remote regions. This study investigates the most recurrent patterns of summertime midlatitude circulation, over the eastern Mediterranean (EM) and also globally, that are most associated with the ISM. Monthly data of 44 summers from the ERA40 dataset are used and two multidimensional statistical methods, the Principal Component Analysis (PCA) and Canonical Correlation Analysis (CCA), are implemented. The ISM is found to be related to subsidence anomalies in the middle and more extendedly in the upper troposphere over the central and eastern Mediterranean and with an Etesian-like pattern regarding the field of the lower troposphere winds. An equatorial Rossby wave pattern, extending westward from an ISM heat source up to EM and N. Africa, was identified to be associated with the variability of ISM. The observed relationship between the ISM and the EM circulation features can be attributed to this equatorial Rossby wave response to the monsoon forcing. CCA implementation revealed the interconnection of the aforementioned PCA results with an ISM action center over the northern Arabian Sea and the monsoon trough region. © 2018 by the authors

    Smart Water Management for Cities

    No full text
    The deployment of real-world water monitoring and analytics tools is still far behind the growing needs of cities, which are facing constant urbanisation and overgrowth of the population. This paper presents a full-stack data-mining infrastructure for smart water management for cities being developed withinWater4Cities project. The stack is tested in two use cases - Greek island of Skiathos and Slovenian capital Ljubljana, each facing its own challenges related to groundwater. Bottom layer of the platform provides data gathering and provision infrastructure based on IoT standards. The layer is enriched with a dedicated missing data imputation infrastructure, which supports coherent analysis of long-term impacts of urbanisation and population growth on groundwater reserves. Data-driven approach to groundwater levels analysis, which is important for decision support in flood and groundwater management, has shown promising results and could replace or complement traditional process-driven models. Data visualization capabilities of the platform expose powerful synergies with data mining and contribute significantly to the design of future decision support systems in water management for cities
    corecore