448 research outputs found

    PRECISE KINEMATIC APPLICATIONS OF GPS: PROSPECTS AND CHALLENGES

    Get PDF
    GPS kinematic positioning in the post-processed or in the real-time mode is now increasingly used for many surveying and navigation applications on land, at sea and in the air. Techniques range from the robust pseudo-range-based differential GPS (DGPS) techniques capable of delivering accuracies at the few metre level, to sophisticated carrier phase-based centimetre accuracy techniques. The distance from the mobile receiver to the nearest reference receiver may range from a few kilometres to hundreds of kilometres. As the receiver separation increases, the problems of accounting for distance-dependent biases grows. For carrier phasebased techniques reliable ambiguity resolution becomes an even greater challenge. In the case of DGPS, more appropriate implementations such as Wide Area DGPS become necessary. In this paper, the challenges, progress and outlook for high precision GPS kinematic positioning for the short-range, medium-range and long-range cases, in both the post-processing and real-time modes will be discussed. Although the focus will be on carrier phase-based systems, some comments will also be made with regards to DGPS systems. Several applications of kinematic GPS positioning will be considered, so as to demonstrate the engineering challenges in addition to GPS, that have to be addressed

    Contribution of GNSS CORS Infrastructure to the Mission of Modern Geodesy and Status of GNSS CORS in Thailand

    Get PDF
    Geodesy is the science of measuring and mapping the geometry, orientation and gravity field of the Earth including the associated variations with time. Geodesy has also provided the foundation for high accuracy surveying and mapping. Modern Geodesy involves a range of space and terrestrial technologies that contribute to our knowledge of the solid earth, atmosphere and oceans. These technologies include: Global Positioning System/Global Navigation Satellite Systems (GPS/GNSS), Satellite Laser Ranging (SLR), Very Long Baseline Interferometry (VLBI), Satellite Altimetry, Gravity Mapping Missions such as GRACE, CHAMP and GOCE, satelliteborne Differential Interferometric Synthetic Aperture Radar (DInSAR), Absolute and Relative Gravimetry, and Precise Terrestrial Surveying (Levelling and Traversing). A variety of services have been established in recent years to ensure high accuracy and reliable geodetic products to support geoscientific research. The reference frame defined by Modern Geodesy is now the basis for most national and regional datums. Furthermore, the GPS/GNSS technology is a crucial geopositioning tool for both Geodesy and Surveying. There is therefore a blurring of the distinction between geodetic and surveying GPS/GNSS techniques, and increasingly the ground infrastructure of continuously operating reference stations (CORS) receivers attempts to address the needs of both geodesists and other positioning professionals. Yet Geodesy is also striving to increase the level of accuracy by a factor of ten over the next decade in order to address the demands of “global change” studies. The Global Geodetic Observing System (GGOS) is an important component of the International Association of Geodesy. GGOS aims to integrate all geodetic observations in order to generate a consistent high quality set of geodetic parameters for monitoring the phenomena and processes within the “System Earth”. Integration implies the inclusion of all relevant information for parameter estimation, implying the combination of geometric and gravimetric data, and the common estimation of all the necessary parameters representing the solid Earth, the hydrosphere (including oceans, ice-caps, continental water), and the atmosphere. This paper will describe the background to the establishment of GGOS, discuss the important role to be played by GPS/GNSS infrastructure in realising the GGOS mission and provide an update status of GNSS CORS in Thailand

    GPS network-based approach to mitigate residual tropospheric delay in low latitude areas

    Get PDF
    A strong spatio-temporal variation of the wet component in the troposphere leaves us in a peculiar predicament. The residual tropospheric delay will remain in the measurements and therefore affect the estimation of related parameters. In the areas of hot and wet climate conditions, especially in the equatorial or low latitude regions, the strong tropospheric effect on GPS measurements is unquestionable. This study proposes geometric modeling through the network-based approach to mitigate the residual tropospheric delay in such regions. A part of Southeast Asia is selected as a test area for the study, which covers Malaysia and Singapore. Tests are conducted in post-processing but in the “simulating RTK� mode, and evaluated by the number of ambiguity fixes and the accuracy of the coordinate results. Network-based RTK positioning in low latitude areas has shown that the proposed technique can enhance ambiguity resolution by pivoting the ionosphere-free measurements through the mitigated residual tropospheric delay

    Analyzing Anomalous Artefacts in TDS-1 Delay Doppler Maps

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Global Navigation Satellite System Reflectometry (GNSS-R) uses the GNSS reflected signals to study parameters of the Earth's surface such as ocean surface height, wind speed, soil moisture, sea surface target detection. In this paper fourteen DDMs (Delay Doppler Maps) of TechDemoSat-1 (TDS-1) containing anomalous artefacts are presented and analyzed. Anomalous artefacts are not caused by the reflection from Earth surface targets, occultation, nor the leakages of direct signals, but likely - according to their delays- from reflection of targets above the Earth's surface (either airborne or spaceborne).Postprint (author's final draft

    Network-based RTK Positioning: Impact of Separating Dispersive and Non-dispersive Components on User-side Processing Strategy

    Get PDF
    The concept of network-based positioning has been extensively developed in order to better model the distance-dependent errors of GPS carrier-phase measurements. These errors can be separated into a frequency-dependent or dispersive component (e.g. the ionospheric delay) and a non-dispersive component (e.g. the tropospheric delay and orbit biases). In fact, dispersive and non-dispersive errors have different dynamic effects on the GPS network corrections. The separation of the two is useful for modelling the network corrections and can provide network users with more options for their data processing strategy. A simple running average is proposed in this paper to provide a stable network correction for the non-dispersive term. It is found that the non-dispersive correction can be used to obtain better ionosphere-free measurements, and therefore helpful in resolving the long-range integer ambiguity of the GPS carrier-phase measurements. Once the integer ambiguities have been resolved, dispersive and non-dispersive corrections can be applied to the fixed carrier-phase measurements for positioning step so as to improve the accuracy of the estimated coordinates. Instantaneous positioning, i.e. single-epoch positioning, has been tested for two regional networks: Sydney Network (SYDNET) and Singapore Integrated Multiple Reference Station (SIMRSN), Singapore. The test results have shown that the proposed strategy performs well in generating the network corrections, in fixing ambiguities and in computing a user’s position

    Integrity monitoring for precise orbit determination of LEO satellites

    Get PDF
    Due to an increasing requirement for high accuracy orbital information for low Earth orbit (LEO) satellites, precise orbit determination (POD) of LEO satellites is a topic of growing interest. To assure the safety and reliability of the applications requiring high accuracy LEO orbits in near-real-time, integrity monitoring (IM) is an essential operation of the POD process. In this contribution, the IM strategy for LEO POD in both the kinematic and reduced-dynamic modes is investigated. The overbounding parameters of the signal-in-space range error are investigated for the GPS products provided by the International GNSS Service’s Real-Time Service and the Multi-GNSS Advanced Demonstration of Orbit and Clock Analysis service. Benefting from the dynamic models used and the improved model strength, the test results based on the data of the LEO satellite GRACE FO-1 show that the average-case mean protection levels (PLs) can be reduced from about 3–4 m in the kinematic mode to about 1 m in the reduced-dynamic mode in the radial, along-track and cross-track directions. The overbounding mean values of the SISRE play the dominant role in the fnal PLs. In the reduced-dynamic mode and averagecase projection, the IM availabilities reach above 99% in the radial, along-track and cross-track directions with the alert limit (AL) set to 2 m. The values are still above 98% with the AL set to 4 m, when the duty cycle of tracking is reduced to 40%, e.g., in the case of power limits for miniature satellites such as CubeSats

    Integrity Monitoring: From Airborne to Land Applications

    Get PDF
    Safety-critical applications in transportation require GNSS-based positioning with high levels of continuity, accuracy and integrity. The system needs to detect and exclude faults and to raise an alarm in the event of unsafe positioning. This capability is referred to as integrity monitoring (IM). While IM was considered until recently only in aviation, it is currently a key performance parameter in land applications, such as Intelligent Transport Systems (ITS). In this chapter the IM concepts, models and methods developed so far are compared. In particular, Fault Detection and Exclusion (FDE) and bounding of positioning errors methods borrowed from aviation (i.e. Weighted RAIM and ARAIM) are discussed in detail, in view of their possible adoption for land applications. Their strengths and limitations, and the modifications needed for application in the different context are highlighted. A practical demonstration of IM in ITS is presented

    Detecting Targets above the Earth's Surface Using GNSS-R Delay Doppler Maps: Results from TDS-1

    Get PDF
    : Global Navigation Satellite System (GNSS) reflected signals can be used to remotely sense the Earth’s surface, known as GNSS reflectometry (GNSS-R). The GNSS-R technique has been applied to numerous areas, such as the retrieval of wind speed, and the detection of Earth surface objects. This work proposes a new application of GNSS-R, namely to detect objects above the Earth’s surface, such as low Earth orbit (LEO) satellites. To discuss its feasibility, 14 delay Doppler maps (DDMs) are first presented which contain unusually bright reflected signals as delays shorter than the specular reflection point over the Earth’s surface. Then, seven possible causes of these anomalies are analysed, reaching the conclusion that the anomalies are likely due to the signals being reflected from objects above the Earth’s surface. Next, the positions of the objects are calculated using the delay and Doppler information, and an appropriate geometry assumption. After that, suspect satellite objects are searched in the satellite database from Union of Concerned Scientists (UCS). Finally, three objects have been found to match the delay and Doppler conditions. In the absence of other reasons for these anomalies, GNSS-R could potentially be used to detect some objects above the Earth’s surface.Peer ReviewedPostprint (published version

    Bridging clock gaps in Mega-Constellation LEO satellites

    Get PDF
    In recent years, mega-constellation Low Earth Orbit (LEO) satellites have been proposed as an augmentation to the Global Navigation Satellite System (GNSS) for positioning on the ground, especially for those in measurement environments with limited satellite visibility. The fast geometry change of these LEO satellites also reduces the convergence time of Precise Point Positioning (PPP) techniques. To realize the benefits brought by these LEO satellites, their precise orbits and clocks need to be delivered to users, which would typically be based on processing the GNSS signals collected onboard LEO satellites. Assuming that this will be possible in the future, during data reception, storage and transmission, however, data gaps could exist in the collected GNSS measurements, which would result in gaps in the LEO clock estimates. The transmission of the LEO satellite clock corrections to users could also experience outages. In this study, taking the Ultra-Stable Oscillator (USO) onboard GRACE FO-1 as an example of LEO satellites that has similar operational conditions to the expected LEO mega-constellations, three different models are proposed for bridging clock gaps varying from 1 to 60 minutes. Model A considers its mid- to long-term systematic effects, Model B bridges the gaps using low-order polynomials employing the data near the gap, and Model C exploits the benefits of both Models A and B. Results show that Model A results in larger errors than the other two models for short clock gaps, while Model B could lead to a dramatic increase in the bridging errors for long gaps, e.g., 1h. Applying Model C for the USO on GRACE FO-1, the mean absolute bridging errors (in range) are within 1cm for gaps shorter than 10min, and within 0.2m for gaps not exceeding 1h. Increasing the polynomial degree of Model C from quadratic to cubic can lead to a reduction in the mean absolute bridging errors to mm- to cm-level
    corecore