12 research outputs found

    Naphthyridine Derivatives Induce Programmed Cell Death in Naegleria fowleri

    Get PDF
    Primary amoebic encephalitis (PAM) caused by the opportunistic pathogen Naegleria fowleri is characterized as a rapid and lethal infection of the brain which ends in the death of the patient in more than 90% of the reported cases. This amoeba thrives in warm water bodies and causes infection after individuals perform risky activities such as splashing or diving, mostly in non-treated water bodies such as lakes and ponds. Moreover, the infection progresses very fast and no fully effective molecules have currently been found to treat PAM. In this study, naphthyridines fused with chromenes or chromenones previously synthetized by the group were tested in vitro against the trophozoite stage of two strains of N. fowleri. In addition, the most active molecule was evaluated in order to check the induction of programmed cell death (PCD) in the treated amoebae. Compound 3 showed good anti-Naegleria activity (61.45 ± 5.27 and 76.61 ± 10.84 µM, respectively) against the two different strains (ATCC® 30808 and ATCC® 30215) and a good selectivity compared to the cytotoxicity values (>300 µM). In addition, it was able to induce PCD, causing DNA condensation, damage at the cellular membrane, reduction in mitochondrial membrane potential and ATP levels, and ROS generation. Hence, naphthyridines fused with chromenes or chromenones could be potential therapeutic agents against PAM in the near future.This work was funded by PI18/01380 from the Instituto de Salud Carlos III, Spain; RICET (project RD16/0027/0001) from the Programa Redes Temáticas de Investigación Cooperativa, FIS (Ministerio Español de Salud, Madrid, Spain); and CB21/13/00100 Consorcio Centro De Investigacion Biomedica En Red M.P. (CIBER) de Enfermedades Infecciosas, Inst. de Salud Carlos III, Madrid, Spain. A.R.L. and I.A.J. were funded by the Agencia Canaria de Investigación, Innovación y Sociedad de la Información (ACIISI). Additionally, financial support from the Ministerio de Ciencia, Innovación y Universidades (MCIU), Agencia Estatal de Investigación (AEI), and Fondo Europeo de Desarrollo Regional (FEDER; RTI2018-101818-B-I00, UE) and from Gobierno Vasco, Universidad del País Vasco (GV, IT 992-16; UPV) is gratefully acknowledged. Technical and human support provided by IZO-SGI, SGIker (UPV/EHU, MICINN, GV/EJ, ERDF, and ESF) is gratefully acknowledged

    Sesquiterpene lactones as potential therapeutic agents against Naegleria fowleri

    Get PDF
    Naegleria fowleri is the causative agent the primary amoebic meningoencephalitis (PAM), a fatal disease in more than the 90% of the reported cases that affects the central nervous system. The amoeba infects the nasal cavity of mostly children and young adults who report previous aquatic exposure in warm water sources. The rapid progression of the disease and the lack of effective and safety therapeutic options make the search of new anti-amoebic compounds an urgent issue. In this study, twelve sesquiterpene lactones isolated from the zoanthid Palythoa aff. clavata were tested against the trophozoite stage of Naegleria fowleri. Anhydroartemorin (2) and 1(10)Z,4E,14-acetoxy-costunolide (3) showed the best anti-amoeboid activity values with IC50 23.02 ± 1.26 and 28.34 ± 6.27, respectively. In addition, the mechanisms of programmed cell death induction of these two molecules were evaluated with positive results for both compounds. Finally, a structure-activity relationship was analyzed to reveal the dependence of reactivity and lipophilicity on the biological activity. The log P values of the compounds were calculated to postulate them as good candidates to cross the blood-brain barrier, a limiting factor in the development of new anti-Naegleria treatments. Therefore, the mentioned sesquiterpene lactones could be considered as potential PAM therapeutic options in the future.This work was funded by projects PI18/01380 from Instituto de Salud Carlos III, Spain and RICET (RD16/0027/0001 project) and PID2019–109476RB-C21 (BIOALGRI) (Spanish Ministry of Science, Madrid, Spain; from Programa Redes Temáticas de Investigación Cooperativa, FIS (Ministerio Español de Salud, Madrid, Spain) and FEDER. Consorcio Centro de Investigación Biomédica En Red M.P. (CIBER) de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28006 Madrid, Spain and Cabildo de Tenerife 21/0587 cofunded by MEDI and FDCAN. ARL and IAJ were funded by Agencia Canaria de Investigación, Innovación y Sociedad de la Información (ACIISI). N.N. were funded by the Agustín de Betancourt Programme (Cabildo de Tenerife, TFinnova Programme supported by MEDI and FDCAN funds). Authors acknowledge to Drs. Alberto Brito and Adriana Rodríguez Hernández from Universidad de La Laguna (ULL) the taxonomic classification of biological material, and Dr. Ezequiel Quintana Morales from Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (IPNA-CSIC) for assistance in molecular calculations.Peer reviewe

    Effect of a Commercial Disinfectant CLORICAN® on Acanthamoeba spp. and Naegleria fowleri Viability

    No full text
    Swimming pool water treatment by chemicals is an essential step to avoid microbial proliferation and infections namely caused by free living amoeba such as, for example, primary amebic meningoencephalitis and Acanthamoeba keratitis. In the present study, a commercial reactive, CLORICAN, based on chlorine dioxide, was evaluated against Acanthamoeba spp. and Naegleria fowleri. We observed that CLORICAN could eliminate in a short period of incubation time both amoebae. Furthermore, Naegleria fowleri’s trophozoites were more sensitive than those of Acanthamoeba spp. By means of inverted microscopy, the chlorine dioxide was found to greatly affect morphology shape by increasing the cell size shrinkage

    Ursolic Acid Derivatives as Potential Agents Against Acanthamoeba Spp.

    No full text
    The current chemotherapy of Acanthamoeba keratitis relies on few drugs with low potential and limited efficacy, for all this there is an urgent need to identify new classes of anti-Acanthamoeba agents. In this regard, natural products play an important role in overcoming the current need and medicinal chemistry of natural products represents an attractive approach for the discovery and development of new agents. Ursolic acid, a natural pentacyclic triterpenoid compound, possesses a broad spectrum of activities including anti-Acanthamoeba. Herein, we report on the development by chemical transformation of an ursolic acid-based series of seven compounds (2–8), one of them reported for the first time. The structure-activity relationship (SAR) analysis of their anti-Acanthamoeba activity revealed that acylation/ether formation or oxidation enhances their biological profile, suggesting that the hydrophobic moiety contributes to activity, presumably by increasing the affinity and/or cell membrane permeability. These ursolic acid derivatives highlight the potential of this source as a good base for the development of novel therapeutic agents against Acanthamoeba infections

    The therapeutic potential of novel isobenzofuranones against Naegleria fowleri

    No full text
    The Free-Living Amoeba species, Naegleria fowleri is the causative agent of a lethal encephalitis known as Primary Amoebic Encephalitis (PAM). Moreover, most of the reported cases are often related to swimming and/or diving in aquatic environments. In addition, the current therapeutic options against PAM are not fully effective and hence, there is an urgent need to develop novel therapeutic agents against this disease. Previously isobenzofuranones compounds have been reported to present antiprotozoal and antifungal activity among others. However, to the best of our knowledge, these molecules have not been previously tested against N. fowleri. Therefore, the aim of this study was to evaluate the activity of 14 novel isobenzofuranones against this pathogenic amoeba. The most active and less toxic molecules, were assayed in order to check induction of Programmed Cell Death (PCD) in the treated amoebae. The obtained results showed that these molecules were able to eliminate N. fowleri trophozoites and also induced PCD. Therefore, the tested isobenzofuranones could be potential therapeutic candidates for the treatment of PAM.This work was funded by PI18/01380 from Instituto de Salud Carlos III, Spain and RICET (RD16/0027/0001 project), from Programa Redes Temáticas de Investigación Cooperativa, FIS (Ministerio Español de Salud, Madrid, Spain) and FEDER. IS was funded by the Agustín de Bethancourt Programme (Cabildo de Tenerife, TFinnova Programme supported by MEDI and FDCAN funds). ARL and IAJ were funded by Agencia Canaria de Investigación, Innovación y Sociedad de la Información (ACIISI). Part of this research was funded by the Spanish Ministry of Science, Innovation and Universities (MICINN), State Research Agency (AEI) and the European Regional Development Funds (ERDF) (PGC2018-094503-B-C21).Peer reviewe

    Cyclolauranes as plausible chemical scaffold against Naegleria fowleri

    No full text
    Primary amoebic meningoencephalitis (PAM) is a central nervous system (CNS) disease caused by Naegleria fowleri that mainly affects children and young adults with fatal consequences in most of the cases. Treatment protocols are based on the combination of different antimicrobial agents, nonetheless there is the need to develop new anti-Naegleria compounds with low toxicity and full effects compared to the currently used drug combination. The marine environment is a well-established source of bioactive natural products. In this work, we have focused on the structure of Laurencia cyclolaurane-type sesquiterpenes as potential chemical model against Naegleria species. The effects of debromolaurinterol (1) to induce PCD/apoptosis-like events in Naegleria fowleri have been evaluated, revealing that this compound induced reduction of ATP production showing a decrease of 99.98% in treated parasite cells. A SAR analysis have been supported with molecular modeling and analysis of the in silico ADME/Tox properties of the Laurencia sesquiterpenes debromolaurinterol (1), laurinterol (2) and allolaurinterol (3), which reinforce cyclolaurane metabolites as plausible molecular models to develop PAM treatments.A.R.L. and I.A.J. acknowledge funding from Agencia Canaria de Investigación, Innovación y Sociedad de la Información (ACIISI). S.G.-D. (grant 740689) thank Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico, for a postdoctoral fellowship. Authors acknowledge Dr. R. Riosmena Rodríguez (Universidad Autónoma de Baja California Sur, UABCS) for identification of the algae. This study was supported by the Ministry of Science and Innovation, Spain (project no. PID2019-109476RB-C21, BIOALGRI); the Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), Spain (project no. RD16/0027/0001 of the programe of Redes Temáticas de Investigación Cooperativa, FIS), Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III, Spain (CB21/13/00100), Ministerio de Sanidad, Gobierno de España and by the project No. 21/0587 funded by the ‘Cabildo de Tenerife, Tenerife innova, Marco Estratégico de Desarrollo Insular (MEDI) and Fondo de Desarrollo de Canarias (FDCAN).Peer reviewe

    Identification and characterization of novel marine oxasqualenoid yucatecone against Naegleria fowleri

    Get PDF
    Naegleria fowleri is an opportunistic protozoan, belonging to the free-living amoeba group, that can be found in warm water bodies. It is causative agent the primary amoebic meningoencephalitis, a fulminant disease with a rapid progression that affects the central nervous system. However, no 100% effective treatments are available and those that are currently used involve the appearance of severe side effects, therefore, there is an urgent need to find novel antiamoebic compounds with low toxicity. In this study, the in vitro activity of six oxasqualenoids obtained from the red algae Laurencia viridis was evaluated against two different strains of N. fowleri (ATCC® 30808 and ATCC® 30215) as well as their cytotoxicity against murine macrophages. Yucatecone was the molecule with the highest selectivity index (>2.98 and 5.23 respectively) and it was selected to continue with the cell death type determination assays. Results showed that yucatone induced programmed cell death like responses in treated amoebae causing DNA condensation and cellular membrane damage among others. In this family of oxasqualenoids, it seems that the most significative structural feature to induce activity against N. fowleri is the presence of a ketone at C-18. This punctual oxidation transforms an inactive compound into a lead compound as the yucatecone and 18-ketodehydrotyrsiferol with IC50 values of 16.25 and 12.70 μM, respectively. The assessment of in silico ADME/Tox analysis revealed that the active compounds showed good Human Oral Absorption and demonstrate that are found to be within the limit of approved drug parameter range. Hence, the study highlights promising potential of yucatone to be tested for therapeutic use against primary amoebic meningoencephalitis

    In Vitro Activity of Statins against Naegleria fowleri

    No full text
    Naegleria fowleri causes a deadly disease called primary amoebic meningoencephalitis (PAM). Even though PAM is still considered a rare disease, the number of reported cases worldwide has been increasing each year. Among the factors to be considered for this, awareness about this disease, and also global warming, as these amoebae thrive in warm water bodies, seem to be the key factors. Until present, no fully effective drugs have been developed to treat PAM, and the current options are amphotericin B and miltefosine, which present side effects such as liver and kidney toxicity. Statins are able to inhibit the 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, which is a key enzyme for the synthesis of ergosterol of the cell membrane of these amoebae. Therefore, the in vitro activity of a group of statins was tested in this study against two types of strains of Naegleria fowleri. The obtained results showed that fluvastatin was the most effective statin tested in this study and was able to eliminate these amoebae at concentrations of 0.179 ± 0.078 to 1.682 ± 0.775 µM depending on the tested strain of N. fowleri. Therefore, fluvastatin could be a potential novel therapeutic agent against this emerging pathogen

    Silver Nanoparticles as a Novel Potential Preventive Agent against Acanthamoeba Keratitis

    No full text
    Free living, cosmopolitan amoebae from Acanthamoeba genus present a serious risk to human health. As facultative human parasites, these amoebae may cause Acanthamoeba keratitis (AK). Acanthamoeba keratitis is a severe, vision-threatening corneal infection with non-specific symptoms. The number of reported AK cases worldwide has been increasing every year. Moreover, 90% of Acanthamoeba keratitis cases are related to contact lens use. Wearing and storage contact lenses not in accordance with the physicians and manufacturers recommendations are the primary key risk factors of this disease. Amoebae can easily adhere to the contact lens surface and transmit to the corneal epithelium. Preventing amoebae adhesion to the contact lens surface could significantly decrease the number of AK infections. Until now, the effective therapy against AK is still under development. Currently proposed therapies are mainly limited to the chlorhexidine digluconate combined with propamidine isethionate or hexamidine applications, which are insufficient and very toxic to the eye. Due to lack of effective treatment, looking for new potential preventive agents is crucial to decrease the number of Acanthamoeba keratitis infections, especially among contact lens users. Nanoparticles have been already included in several novel therapies against bacteria, viruses, fungi, and protist. However, their anti-amoebic potential has not been fully tested yet. The aim of this study was to assess silver nanoparticles (AgNPs) and platinum nanoparticles (PtNPs) anti-amoebic activity and influence on the amoebae adhesion to the surface of four different groups of contact lenses—classified according to the Food and Drugs Administration (FDA) guidelines. The obtained results show that both tested nanoparticles were effective against Acanthamoeba trophozoites and decreased the amoebae adhesion to the contact lens surface. AgNPs showed better anti-amoebic activity to cytotoxicity dependence and reduced amoebae adhesion in a wider spectrum of the tested contact lenses. Our studies also confirmed that ionization next to hydration of the contact lens material is a crucial parameter influencing the Acanthamoeba adhesion to the contact lens surface. In conclusion, silver nanoparticles might be considered as a novel preventive agent against Acanthamoeba keratitis infection
    corecore