40 research outputs found
Targeting the Endothelin A Receptor in IgA Nephropathy
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis worldwide and carries a substantial risk of kidney failure. New agency-approved therapies, either specifically for IgAN or for chronic kidney disease (CKD) in general, hold out hope for mitigating renal deterioration in patients with IgAN. The latest addition to this therapeutic armamentarium targets the endothelin-A receptor (ETAR). Activation of ETAR on multiple renal cell types elicits a host of pathophysiological effects, including vasoconstriction, cell proliferation, inflammation, apoptosis, and fibrosis. Blockade of ETAR is renoprotective in experimental models of IgAN and reduces proteinuria in patients with IgAN. This review discusses the evidence supporting the use of ETAR blockade in IgAN as well as addressing the potential role for this class of agents among the current and emerging therapies for treating this disorder.</p
Targeting the Endothelin A Receptor in IgA Nephropathy
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis worldwide and carries a substantial risk of kidney failure. New agency-approved therapies, either specifically for IgAN or for chronic kidney disease (CKD) in general, hold out hope for mitigating renal deterioration in patients with IgAN. The latest addition to this therapeutic armamentarium targets the endothelin-A receptor (ETAR). Activation of ETAR on multiple renal cell types elicits a host of pathophysiological effects, including vasoconstriction, cell proliferation, inflammation, apoptosis, and fibrosis. Blockade of ETAR is renoprotective in experimental models of IgAN and reduces proteinuria in patients with IgAN. This review discusses the evidence supporting the use of ETAR blockade in IgAN as well as addressing the potential role for this class of agents among the current and emerging therapies for treating this disorder.</p
A Novel Fluorescent Clinical Method to Rapidly Quantify Plasma Volume
Objectives
To determine the performance of a rapid fluorescent indicator technique for measuring plasma volume (PV).
Methods
This was an open-label, observational evaluation of a two-component intravenous visible fluorescent dye technique to rapidly measure PV in 16 healthy subjects and 16 subjects with chronic kidney disease (8 stage 3 and 8 stage 4 CKD), at 2 clinical research sites. The method consisted of a single intravenous injection of 12 mg of a large 150-kDa carboxy-methyl dextran conjugated to a fluorescent rhodamine-derived dye as the PV marker (PVM), and 35 mg of a small 5-kDa carboxy-methyl dextran conjugated to fluorescein, the renal clearance marker. Dye concentrations were quantified 15 min after the injections for initial PV measurements using the indicator-dilution principle. Additional samples were taken over 8 h to evaluate the stability of the PVM as a determinant of PV. Blood volumes (BV) were calculated based on PV and the subject’s hematocrit. Pharmacokinetic parameters were calculated from the plasma concentration data taken over several days using noncompartmental methods (Phoenix WinNonlin®). Linear correlation and Bland-Altman plots were used to compare visible fluorescent injectate-measured PV compared to Nadler’s formula for estimating PV. Finally, 8 healthy subjects received 350 mL infusion of a 5% albumin solution in normal saline over 30 min and a repeat PV determination was then carried out.
Results
PV and BV varied according to weight and body surface area, with PV ranging from 2,115 to 6,234 mL and 28.6 to 41.9 mL/kg when weight adjusted. Both parameters were stable for > 6 h with repeated plasma measurements of the PVM. There was no difference between healthy subjects and CKD subjects. Overall, there was general agreement with Nadler’s estimation formula for the mean PV in subjects. A 24-h repeat dose measurement in 8 healthy subjects showed PV variability of 98 ± 121 mL (mean = 3.8%). Additionally, following an intravenous bolus of 350 mL of a 5% albumin solution in normal saline in 8 healthy subjects, the mean (SD) measured increase in PV was 356 (±50.0) mL post-infusion. There were no serious adverse events reported during the study.
Conclusions
This minimally invasive fluorescent dye approach safely allowed for rapid, accurate, and reproducible determination of PV, BV, and dynamic monitoring of changes following fluid administration
The Emerging Role of Complement Proteins as a Target for Therapy of IgA Nephropathy
IgA nephropathy (IgAN) is the most common form of primary glomerulonephritis worldwide and a common cause of end-stage renal disease. Evaluation of a kidney biopsy is necessary for diagnosis, with routine immunofluorescence microscopy revealing dominant or co-dominant IgA immunodeposits usually with complement C3 and sometimes IgG and/or IgM. IgA nephropathy reduces life expectancy by more than 10 years and leads to kidney failure in 20–40% of patients within 20 years of diagnosis. There is accumulating clinical, genetic, and biochemical evidence that complement plays an important role in the pathogenesis of IgA nephropathy. The presence of C3 differentiates the diagnosis of IgA nephropathy from the subclinical deposition of glomerular IgA. Markers for the activation of the alternative and mannan-binding lectin (MBL) pathways in renal-biopsy specimens are associated with disease activity and portend a worse renal outcome. Complement proteins in the circulation have also been evaluated in IgA nephropathy and found to be of prognostic value. Recently, genetic studies have identified IgA nephropathy-associated loci. Within these loci are genes encoding products involved in complement regulation and interaction with immune complexes. Put together, these data identify the complement cascade as a rational treatment target for this chronic kidney disease. Recent case reports on the successful use of humanized anti-C5 monoclonal antibody eculizumab are consistent with this hypothesis, but a better understanding of the role of complement in IgA nephropathy is needed to guide future therapeutic interventions
Recommended from our members
Rituximab or Cyclosporine in the Treatment of Membranous Nephropathy
Background: B-cell anomalies play a role in the pathogenesis of membranous nephropathy. B-cell depletion with rituximab may therefore be noninferior to treatment with cyclosporine for inducing and maintaining a complete or partial remission of proteinuria in patients with this condition. Methods: We randomly assigned patients who had membranous nephropathy, proteinuria of at least 5 g per 24 hours, and a quantified creatinine clearance of at least 40 ml per minute per 1.73 m(2) of body-surface area and had been receiving angiotensin-system blockade for at least 3 months to receive intravenous rituximab (two infusions, 1000 mg each, administered 14 days apart; repeated at 6 months in case of partial response) or oral cyclosporine (starting at a dose of 3.5 mg per kilogram of body weight per day for 12 months). Patients were followed for 24 months. The primary outcome was a composite of complete or partial remission of proteinuria at 24 months. Laboratory variables and safety were also assessed. Results: A total of 130 patients underwent randomization. At 12 months, 39 of 65 patients (60%) in the rituximab group and 34 of 65 (52%) in the cyclosporine group had a complete or partial remission (risk difference, 8 percentage points; 95% confidence interval [CI], -9 to 25; P=0.004 for noninferiority). At 24 months, 39 patients (60%) in the rituximab group and 13 (20%) in the cyclosporine group had a complete or partial remission (risk difference, 40 percentage points; 95% CI, 25 to 55; P<0.001 for both noninferiority and superiority). Among patients in remission who tested positive for anti-phospholipase A(2) receptor (PLA2R) antibodies, the decline in autoantibodies to anti-PLA2R was faster and of greater magnitude and duration in the rituximab group than in the cyclosporine group. Serious adverse events occurred in 11 patients (17%) in the rituximab group and in 20 (31%) in the cyclosporine group (P=0.06). Conclusions: Rituximab was noninferior to cyclosporine in inducing complete or partial remission of proteinuria at 12 months and was superior in maintaining proteinuria remission up to 24 months. (Funded by Genentech and the Fulk Family Foundation; MENTOR ClinicalTrials.gov number, .) In a randomized, controlled trial involving patients with membranous nephropathy, rituximab was noninferior to cyclosporine in inducing complete or partial remission of proteinuria at 12 months and was superior in maintaining proteinuria remission for up to 24 months.Genentech; Fulk Family Foundation6 month embargo; published July 4, 2019This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]