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Abstract

Objectives—To determine the performance of a rapid fluorescent indicator technique for 

measuring plasma volume (PV).

Methods—This was an open-label, observational evaluation of a two-component intravenous 

visible fluorescent dye technique to rapidly measure PV in 16 healthy subjects and 16 subjects 

with chronic kidney disease (8 stage 3 and 8 stage 4 CKD), at 2 clinical research sites. The method 

consisted of a single intravenous injection of 12 mg of a large 150-kDa carboxy-methyl dextran 

conjugated to a fluorescent rhodamine-derived dye as the PV marker (PVM), and 35 mg of a small 

5-kDa carboxy-methyl dextran conjugated to fluorescein, the renal clearance marker. Dye 

concentrations were quantified 15 min after the injections for initial PV measurements using the 

indicator-dilution principle. Additional samples were taken over 8 h to evaluate the stability of the 

PVM as a determinant of PV. Blood volumes (BV) were calculated based on PV and the subject’s 

hematocrit. Pharmacokinetic parameters were calculated from the plasma concentration data taken 

over several days using noncompartmental methods (Phoenix WinNonlin®). Linear correlation 

and Bland-Altman plots were used to compare visible fluorescent injectate-measured PV 
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compared to Nadler’s formula for estimating PV. Finally, 8 healthy subjects received 350 mL 

infusion of a 5% albumin solution in normal saline over 30 min and a repeat PV determination was 

then carried out.

Results—PV and BV varied according to weight and body surface area, with PV ranging from 

2,115 to 6,234 mL and 28.6 to 41.9 mL/kg when weight adjusted. Both parameters were stable for 

> 6 h with repeated plasma measurements of the PVM. There was no difference between healthy 

subjects and CKD subjects. Overall, there was general agreement with Nadler’s estimation 

formula for the mean PV in subjects. A 24-h repeat dose measurement in 8 healthy subjects 

showed PV variability of 98 ± 121 mL (mean = 3.8%). Additionally, following an intravenous 

bolus of 350 mL of a 5% albumin solution in normal saline in 8 healthy subjects, the mean (SD) 

measured increase in PV was 356 (±50.0) mL post-infusion. There were no serious adverse events 

reported during the study.

Conclusions—This minimally invasive fluorescent dye approach safely allowed for rapid, 

accurate, and reproducible determination of PV, BV, and dynamic monitoring of changes 

following fluid administration.
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Background

In patients presenting with the potential of volume abnormalities, an accurate evaluation is 

critical for appropriate diagnosis and management. Unfortunately, volume assessment is 

challenging. Studies demonstrate that 10–20% of non-heart failure (HF) dyspneic patients 

are initially diagnosed with HF, i.e. they are incorrectly diagnosed with volume overload 

despite its absence [1, 2]. Similarly, in the 1,586 patient Breathing Not Properly study [3], 

adding bovine natriuretic peptide (BNP) to the history, physical exam, and chest X-ray 

improved the misdiagnosis rate, which remained high at 18%. These error rates occur 

because the clinical estimate of volume status is difficult and highly dependent on clinician 

experience and ability. These errors occur because the signs and symptoms usually 

considered suggestive of volume overload suffer from extremely poor inter-rater reliability. 

In a study of 68 emergency department patients, the kappa measurement of inter-rater 

agreement had an overall dismal performance. Although there was substantial agreement [4] 

for edema (κ = 0.67), agreement was only moderate for ascites (κ = 0.47) and crepitations 

(κ = 0.43), and was nonexistent for orthopnea (κ = 0.20), jugular venous distention (κ = 

0.08), or the presence of a third heart sound (S3) (κ = 0.10) [5]. With such low inter-rater 

agreement, the practice of relying solely on clinical grounds for volume assessment is 

questionable.

Readily available rapid and accurate bedside techniques for measurement of a patient’s 

volume are limited. Bedside ultrasound can evaluate vena cava size, with consideration of 

respiratory variation, to aid in the assessment. However, the skill set to obtain these 

measures is not universally available. A number of hemodynamic measurements [6–9] that 

measure physiological surrogates of volume, e.g. pulse pressure [10, 11] and stroke volume 
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[12, 13] variations – both indicators of fluid responsiveness, have been promoted. The 

currently available options for volume assessment include capillary refill, peripheral 

temperature, skin color, mean arterial pressure, urine output, creatinine, lactate, lung sounds, 

chest X ray, edema, weight changes, central venous oxygen saturation, and cardiac output 

monitoring [9, 14–17]. All of these parameters are surrogate markers of the adequacy of the 

circulating blood volume (BV) [14, 15]. Ultimately, the decision to administer or remove 

volume is almost always predicated on an assessment of volume status in the absence of a 
direct measurement.

Because of the need to accurately assess volume in real time, studies evaluating a new 

application of dye dilution technology to objectively determine its status offer promise [16–

18]. Filtration assessment and surveillance technology (FAST) is able to measure the 

variables of plasma volume (PV) and glomerular filtration rate (GFR). These parameters are 

determined by dye dilution calculation after the injection of a pair of fluorescent molecules. 

In this application, a visible fluorescent injectate (VFI™), containing 12 mg of a large (150 

kDa) carboxy-methylated dextran conjugated to a fluorescent rhodamine derivative, is the 

PV marker (PVM). It is simultaneously administered with 35 mg of a small (5-kDa) 

carboxy-methylated dextran conjugated to fluorescein that serves as the renal clearance 

marker (RCM). As the large molecule is retained in the intravascular space, its concentration 

reflects real-time PV, and since the small molecule is freely filtered across the glomerulus, 

its change represents the GFR.

As results for GFR measurements in this study population have been previously reported 

[19], the purpose of the present analysis is to assess the relationship of measured PV to that 

estimated by Nadler’s equation [20] and the serum stability of the measured PVM over time.

Methods

This was a phase 2b prospective, open label study (NIH, NCT03095391) observational study 

conducted at two sites: the University of Alabama at Birmingham and the Clinical Research 

Organization ICON (San Antonio, TX, USA). The study protocol and informed consent 

forms were approved by Western IRB in Puyallup, WA, USA. All patients received and 

completed an informed consent form prior to being enrolled in the study. Four cohorts (of 8 

participants each) were enrolled between June 13, 2017, and August 30, 2017. All 

participants provided written informed consent, and the study adhered to the Declaration of 

Helsinki. Eligible participants were 18–75 years old, with body mass index ≥18 and ≤40, 

and nonsterile participants agreed to use medically acceptable methods of contraception.

Demographics, medical and surgical history (including concomitant medication use), height, 

weight, vital signs, and physical examination findings were documented. Laboratory tests 

included chemistry, hematology, hepatic function panel, follicular stimulating hormone 

(females only), creatinine phosphokinase, and HIV, hepatitis C and B serologies, as well as 

urine pregnancy tests and drug screens. 12-lead electrocardiograms were obtained. The 

estimated GFR (eGFR) was calculated using the CKD-EPI formula [21].
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All studies were done in fasting patients in a clinical research unit. Subjects were provided a 

low-protein breakfast prior to the administration of the VFI and had free access to water 

throughout the study. All received a VFI that consisted of 12 mg of a 150-kDa carboxy-

methylated dextran, conjugated to a rhodamine dye (PVM), and 35 mg of a 5-kDa carboxy-

methylated dextran, conjugated to fluorescein (RCM), in a total volume of 3.0 mL. VFI was 

infused intravenously over 30 s. Subjects received a light, low-protein snack 5 h after dosing. 

All patients underwent PV determination within 21 days of screening.

Cohorts 1 and 2 consisted of healthy volunteers. Cohort 1 received a single VFI dose and 

measurement followed by a 350 mL 5% albumin in normal saline 30-min infusion beginning 

at 120 min, with plasma taken 5 min after the end of the infusion for determination of the 

change in volume. Cohort 2 resided overnight in the clinical research unit, receiving 2 VFI 

doses 24 h apart, to determine the variability in the determinations using a paired Student’s t 
test. They were fed a low-protein diet during their stay. Cohorts 3 and 4, representing 

chronic kidney disease (CKD) stage 3 (30≤ eGFR < 60 mL/min/1.73 m2) and 4 (15≤ eGFR 

< 30 mL/min/1.73 m2), respectively, received one VFI dose.

In all cohorts, 3.5 mL of blood was drawn prior to dosing, at 15, 30, 60, 120, 170, 310, 370, 

480 min, and again at 12 and 24 h. While only the 15-min blood draw was used to determine 

PV, samples at the other routine time points were needed for determination of GFR by the 

FAST BioMedical technique (60 and 170 min) and iohexol technique (all 6 blood draws) as 

reported previously [19]. Additional blood draws varied by cohort in order to meet the 

specific experimental procedures prescribed by the protocol. In cohort 1, 350 mL of a 5% 

albumin solution in normal saline was administered over 30 min beginning at 130 min into 

the study, and additional blood samples were obtained at 165, 195, and 205 min to allow 

additional PV measurements after volume expansion. In cohort 2, the standard study was 

repeated a day later when a second-dose VFI was administered. The long-term 

pharmacokinetics of the PVM were determined in cohorts 2, 3, and 4, necessitating 

additional blood draws on days 1, 3, 7, 14, and 20 after the last VFI dose. All samples were 

collected in K2EDTA 3 mL tubes, from the opposite arm that VFI was administered. 

Samples underwent 1,500 g centrifugation for 15 min, after which 250 μL of plasma was 

pipetted and combined with a fluorescence-enhancing reagent (FAST BioMedical, Carmel, 

IN, USA) to total a volume of 2.250 mL. PVM and RCM dye concentration determinations 

were performed on a Turner Trilogy filter fluorimeter (Turner Designs, San Jose, CA, USA).

Pharmacokinetic parameters were calculated from the measured PVM and RCM plasma 

concentration data using noncompartmental methods (Phoenix WinNonlin, Version 6.3 or 

later, Pharsight Corporation, St. Louis, MO, USA) and actual sampling times. Using the 15-

min time point, PV was determined by dividing the measured PVM concentration, in μg/mL, 

by the total dose given (12,000 μg). A measured hematocrit, taken prior to dosing on the 

same day of VFI dosing, was used to calculate BV by the following formula: BV = total 

PV/(1 – hematocrit) [22]. Nadler’s estimated BV was converted to PV by subtracting the 

volume occupied by the cells from the BV determination [21].

Subjects were followed for 21 (±1) days from last VFI injection and were assessed for 

adverse and serious adverse events at each encounter. Long-term monitoring was performed 
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by blood sampling and pharmacokinetic analysis, with the median decay rate used to 

calculate PV > 1 h post-VFI injection. The correction used was determined by an equation: 

Adjusted PV = measured PV – ((measured PV × decay rate (0.0053)) × time).

Statistics

Correlation analysis was done by comparing the measured PV to that estimated by Nadler’s 

formula for each cohort, using the Pearson product-moment correlation coefficient. Data are 

presented as Bland-Altman graphs and comparative graphs.

Results

Table 1 shows the results in all 32 subjects studied under equilibrium conditions. Measured 

PV varied from a low of 2,115 mL to a high of 6,234 mL, with concomitant BV of 3,411 and 

8,424 mL, respectively, in those 2 subjects. When adjusted for body weight, the ranges in 

PV and BV were 28.6–41.9 and 44.4–69.8 mL/kg, respectively. In healthy volunteers 

(cohorts 1 and 2), 6/16 (37.5%) were male, 8 (50%) Latino, 7 (43.7%) white, and 1 (6.2%) 

African-American, with a mean (± SD) weight of 79.7 ± 11.6 kg. Their mean plasma 

creatinine was 0.76 ± 0.17 mg/dL, and the mean eGFR was 99.6 ± 16 mL/min/1.73 m2. The 

mean measured PV was 2,706 ± 370 mL and weight-adjusted PV was 36.2 ± 3.5 mL/kg, and 

for Nadler’s estimate the corresponding values were 2,672 ± 341 mL and 35.7 ± 2.7 mL/kg. 

The median measured PV was 2,640.3 mL versus that estimated by Nadler’s formula of 

2,761.5 mL. In CKD patients (cohorts 3 and 4), 8 (50%) were male, 50% African-American, 

7 white (43.7%), and 1 Hispanic (6.2%), with a mean (±SD) weight of 96 ± 18 kg. Their 

mean (±SD) plasma creatinine levels were 1.41 ± 0.30 and 2.75 ± 0.55 mg/dL, and mean 

(±SD) eGFRs were 50 ± 7.8 and 24 ± 3.3 mL/min/1.73 m2 for cohorts 3 and 4, respectively. 

The mean measured PV was 3,368 ± 895 mL and weight-adjusted PV was 35.0 ± 4.5 

mL/kg, and corresponding Nadler’s estimates were 3,448 ± 781 mL and 36.0 ± 3.5 mL/kg. 

The median measured total PV was 3,317 mL versus Nadler’s formula estimation of 3,448 

mL. One patient in this group had a measured PV of 6,234 mL, making the standard 

deviation of the mean for this group very high. However, the weight-adjusted PV in mL/kg 

was similar to other subjects (Table 1).

Comparisons of the measured PV to Nadler’s PV estimating equation are shown in Figure 1, 

with an R2 correlation coefficient of 0.85. If the highest PV patient is not included in the 

analysis, R2 is 0.71 (suppl. Fig. 1; see www.karger.com/doi/10.1159/000496480 for all 

online suppl. Material). A Bland-Altman analysis (Fig. 2) showed a symmetrical distribution 

around the mean. However, values as high as 555 mL above and 609 mL below Nadler’s 

equation estimated values were measured. This suggests that Nadler’s formula was up to 7.1 

mL/kg (23.7%) above or 6.8 mL/kg (18.2%) below the FAST-measured PV.

Patients with consecutive-day PV measurements (cohort 2) had results that were stable (Fig. 

3). The mean difference from day 1 to 2 was 98 ± 121 mL (p = 0.05), representing a mean 

change of 3.8%. In cohort 2–4 patients, followed for 21 days, the mean plasma half-life of 

the 150 kDa PVM was 95.3 ± 38.6, 99.1 ± 23.8, and 106.2 ± 22.5 h, respectively, suggesting 

that the presence of CKD did not alter metabolic elimination of the 150 kDa PVM.
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Figure 4 shows the mean measured PV in mL/kg body weight for 24 patients (cohorts 2–4) 

over 6 h. Female and male subjects were separated into Figure 4a and b, respectively. Figure 

4c shows the mean of all 24 patients over time. PVs were stable over time for individual 

patients and overall, but varied between patients. There was a tendency to see a rise in PV 

after the iohexol injection at 160 min, and the subjects received a small meal at 300 min. 

Subjects in cohort 1 were excluded due to the volume challenge administered and the 

subsequent alteration of PV during the 6 h.

Figure 5a and Table 2 show PV changes in response to a volume-expanding albumin 

infusion in cohort 1 beginning at 130 min after the start of the study. Five minutes after a 30-

min infusion of 350 mL 5% albumin in normal saline, there was a mean increase of 355.8 ± 

50.1 mL (range 294–427 mL), followed by a slow reduction thereafter. Figure 5b shows this 

weight-adjusted response in mL/kg body weight with the 350 mL volume challenge for 

individual patients.

Discussion

The present study shows PV is accurately and reproducibly measured using a fluorescent 

150 kDa PVM. We also described that the large inert PVM had a long half-life and could 

detect dynamic changes in PV induced by a volume challenge without re-dosing the patient 

for up to 6 h. Its use evaluating therapeutically induced changes, e.g. with diuretic 

administration or IV fluid bolus, will require additional study; however, the present study 

indicates it could be of significant benefit in a number of clinical situations where knowing 

PV and dynamic changes in PV are important.

Determination of PV and BV has been a clinical goal for over 70 years. Research studies 

using radioactive iodinated serum albumin (RISA) and chromium 51 erythrocyte (RBC) 

labeling have been used to measure PV and RBC volumes, respectively. These studies have 

identified many areas where measurement of PV and BV would be clinically useful 

including congestive HF [21, 23–26], sepsis [27], and surgical patients [28]. Research 

radioisotope measurements, using the indicator dilution technique have traditionally been 

considered the gold standard for BV and PV assessment [22, 29–32], but they are 

cumbersome and expensive, especially at the bedside. An FDA-approved BV measurement 

system (Daxor, BVA-100) has commercialized the RISA technique and utilized comparisons 

to the ideal BV weight method [33]. This technique uses I131 labeled albumin, requires 

multiple blood draws, is expensive, and only one BV determination is possible per injection 

of radioactive albumin.

The present fluorescent technique uses an inert carboxy-methylated 150-kDa dextran 

conjugated to a rhodamine-derived fluorescent dye as a PVM. The carboxy-methyl 

substitution markedly improves immunologic tolerance, as does the RCM [34]. In more than 

89 subjects and 97 injections to date, there have been no serious adverse events described. 

Furthermore, the large size of the PVM eliminates vascular leakage resulting in a stable 

plasma concentration that allows for multiple determinations following a single injection for 

at least 6 h.
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This technique is not without limitations. Its use in bleeding subjects may be limited, as the 

indicator dye will be lost with the extravasated blood and thus result in a falsely high PV 

calculation. Also, a high vascular permeability could result in leakage of the dextran thus 

limiting the time the marker could be used with accuracy. Additionally, determining whether 

or not a particular PV measurement is abnormal, for a particular patient, is not 

straightforward. To address this, the International Council on Standardization in Hematology 

have published a recommendation [35] on the interpretation of red cell mass and PV 

measurements and established prediction formulae based on body surface area for red cell 

mass. In general, 98–99% of measurements calculated using these formulae are within 25% 

of the predicted norm [31, 33]. One such formula is that described by Nadler et al. [20] 

using body surface area, where: total BV = (0.3669 × height (m)3) + (0.03219 × weight 

(kg)) + 0.6041 for males, and (0.3561 × height (m)3) + (0.03308 × weight (kg)) + 0.1833 for 

females.

Although current approaches to volume assessment [36–38] are entrenched in our daily 

practice, we believe a technique capable of rapid determination of PV (instead of surrogate 

markers of volume status and/or tissue perfusion) would represent a significant advance in 

the clinical management of critically ill patients. Patients with acute and/or chronic HF [39, 

40], especially when complicated by renal insufficiency, frequently present difficult volume 

management problems. The coexistence of both heart and renal failure makes these patients 

particularly difficult to manage, and a small change in intravascular volume status can lead 

to a large change in overall clinical condition. A direct measurement of PV, used alone or in 

combination with surrogates of organ perfusion and/or measurements of blood flow, would 

guide fluid removal more precisely. In turn, this could potentially improve clinical outcomes, 

the ultimate test of any clinical technique. Given this technique also measures GFR 

accurately when compared to a 6 h iohexol measurement [19], its use in cardiorenal patients 

seems an ideal opportunity, where knowledge of both actual measured PV and GFR will 

assist in therapeutic decisions.

Conclusion

We report the results of a novel fluorescent dye technique, capable of repeatedly measuring 

PV easily and accurately. The technique correlates well with Nadler’s estimates of PV, but 

identifies outliers from the predicted value, and accurately tracks acute volume therapy. We 

believe this technology will prove valuable in the assessment and management of fluid 

therapy in hospitalized patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Linear correlation of FAST-measured PV compared to Nadler’s estimated PV. All 32 

subjects studied are reported, and one group that was studied for repeatability of 

measurements was reported twice. If the highest PV is removed from the correlation 

determination, the R2 value is 0.71.
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Fig. 2. 
Bland-Altman plot of all patient data, FAST-measured PV in mL compared to Nadler’s 

estimated PV.
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Fig. 3. 
Plasma volume measurement repeat analysis (24-h separation of doses). In normal subjects, 

a repeat PV was determined 24 h after the first dose. The remaining background 150 kDa 

signal was taken as the new background level to not interfere in the new measurement.
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Fig. 4. 
Change in PV over 6 h. Plasma volume was measured in 12 females (a) and 12 males (b) as 

individual determinations over 6 h. The mean PV in mL/kg for all 24 subjects is shown in c. 

Subjects received 5 mL iohexol and 5 mL normal saline i.v. at 160 min (thin arrow) and 

were fed a light meal beginning at 300 min (thick arrow) into the study. The mean standard 

deviation for individual patients was 1.04 mL/kg and is not shown, as it was smaller than the 

filled circle used to show the value.
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Fig. 5. 
PV change (mL/kg) during 350 mL volume challenge. 350 mL of 5% albumin solution in 

normal saline was given over 30 min beginning at 120 min of the study. Measured PV in mL 

(a) and weight-adjusted PV in mL/kg (b) prior to and over time following the volume 

challenge for individual subjects.
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Table 1.

Patient characteristics, measured GFR, PV, and BV

Cohort Hematocrit, % CKD EPI eGFR, 
mL/min/1.73 m2

FAST PV, mL Nadler PV, mL FAST BV

Cohort 1, healthy subjects; volume 
challenge

38 133 2,115 2,186 3,411

46 71 3,050 2,931 5,616

48 83 3,187 2,904 6,094

37 120 3,443 3,244 5,457

36 89 2,775 2,840 4,356

43 101 3,057 2,502 5,317

32 135 2,649 2,989 3,901

33 108 2,667 2,420 3,998

Cohort 2, healthy subjects; repeat dose

 Day 1 45 119 2,632 2,683 4,820

 Day 2 46 119 2,765 2,644 5,139

 Day 1 39 89 2,294 2,081 3,743

 Day 2 39 89 2,395 2,074 3,920

 Day 1 40 101 3,226 2,899 5,376

 Day 2 40 101 3,399 2,884 5,694

 Day 1 43 87 2,487 2,921 4,379

 Day 2 43 87 2,691 2,911 4,754

 Day 1 35 95 2,457 2,289 3,797

 Day 2 35 95 2,724 2,296 4,198

 Day 1 36 101 2,462 3,071 3,816

 Day 2 36 101 2,540 3,033 3,987

 Day 1 38 80 2,335 2,266 3,753

 Day 2 39 80 2,264 2,237 3,688

 Day 1 42 103 2,457 2,529 4,235

 Day 2 40 103 2,353 2,603 3,941

Cohort 3, 30< eGFR <60 45 51 3,609 3,718 6,562

36 58 2,247 2,521 3,511

38 59 3,288 3,690 5,303

41 57 2,224 2,405 3,770

31 49 4,181 4,189 6,060

36 34 2,505 2,774 3,914

42 46 3,347 3,366 5,741

44 46 3,458 3,470 6,209

Cohort 4, 30> eGFR >15 37 26 3,631 3,540 5,763

26 20 6,234 5,946 8,424

32 29 3,042 3,222 4,473

27 20 3,204 3,446 4,389
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Cohort Hematocrit, % CKD EPI eGFR, 
mL/min/1.73 m2

FAST PV, mL Nadler PV, mL FAST BV

35 23 3,057 3,022 4,704

37 21 3,556 3,463 5,644

39 28 2,899 3,017 4,752

34 25 3,409 3,383 5,165
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Table 2.

Pre- and post-volume infusion measured plasma volumes

Cohort 1 plasma volume measuring fluid challenge response

patient ID age, years sex weight, kg height, cm before infusion after 350 mL infusion

15 min 120 min 165 min 195 min 480 min

1009 19 F 59 158 2,058 2,098 2,437 2,388 2,321

1010 64 M 92 171 2,965 3,114 3,482 3,360 3,053

1011 58 M 92 176 3,177 3,242 3,545 3,501 3,274

1012 47 F 91 176 3,423 3,490 3,784 3,688 3,574

1013 69 F 83 163 2,710 2,810 3,113 2,903 2,875

1014 51 F 82 160 3,002 3,034 3,461 3,294 3,147

1015 30 F 74 171 2,627 2,641 3,057 3,038 2,912

1016 48 F 65 153 2,604 2,629 3,025 2,969 2,942

Average change (SD), mL 355.8 (50.1)
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