51 research outputs found

    Optimal Media for Use in Air Sampling To Detect Cultivable Bacteria and Fungi in the Pharmacy

    Get PDF
    Current guidelines for air sampling for bacteria and fungi in compounding pharmacies require the use of a medium for each type of organism. U.S. Pharmacopeia (USP) chapter <797> (http://www.pbm.va.gov/linksotherresources/docs/USP797PharmaceuticalCompoundingSterileCompounding.pdf) calls for tryptic soy agar with polysorbate and lecithin (TSApl) for bacteria and malt extract agar (MEA) for fungi. In contrast, the Controlled Environment Testing Association (CETA), the professional organization for individuals who certify hoods and clean rooms, states in its 2012 certification application guide (http://www.cetainternational.org/reference/CAG-009v3.pdf?sid=1267) that a single-plate method is acceptable, implying that it is not always necessary to use an additional medium specifically for fungi. In this study, we reviewed 5.5 years of data from our laboratory to determine the utility of TSApl versus yeast malt extract agar (YMEA) for the isolation of fungi. Our findings, from 2,073 air samples obtained from compounding pharmacies, demonstrated that the YMEA yielded >2.5 times more fungal isolates than TSApl

    Exploring Links Between Psychosis and Frontotemporal Dementia Using Multimodal Machine Learning Dementia Praecox Revisited

    Get PDF
    ImportanceThe behavioral and cognitive symptoms of severe psychotic disorders overlap with those seen in dementia. However, shared brain alterations remain disputed, and their relevance for patients in at-risk disease stages has not been explored so far.ObjectiveTo use machine learning to compare the expression of structural magnetic resonance imaging (MRI) patterns of behavioral-variant frontotemporal dementia (bvFTD), Alzheimer disease (AD), and schizophrenia; estimate predictability in patients with bvFTD and schizophrenia based on sociodemographic, clinical, and biological data; and examine prognostic value, genetic underpinnings, and progression in patients with clinical high-risk (CHR) states for psychosis or recent-onset depression (ROD).Design, Setting, and ParticipantsThis study included 1870 individuals from 5 cohorts, including (1) patients with bvFTD (n = 108), established AD (n = 44), mild cognitive impairment or early-stage AD (n = 96), schizophrenia (n = 157), or major depression (n = 102) to derive and compare diagnostic patterns and (2) patients with CHR (n = 160) or ROD (n = 161) to test patterns’ prognostic relevance and progression. Healthy individuals (n = 1042) were used for age-related and cohort-related data calibration. Data were collected from January 1996 to July 2019 and analyzed between April 2020 and April 2022.Main Outcomes and MeasuresCase assignments based on diagnostic patterns; sociodemographic, clinical, and biological data; 2-year functional outcomes and genetic separability of patients with CHR and ROD with high vs low pattern expression; and pattern progression from baseline to follow-up MRI scans in patients with nonrecovery vs preserved recovery.ResultsOf 1870 included patients, 902 (48.2%) were female, and the mean (SD) age was 38.0 (19.3) years. The bvFTD pattern comprising prefrontal, insular, and limbic volume reductions was more expressed in patients with schizophrenia (65 of 157 [41.2%]) and major depression (22 of 102 [21.6%]) than the temporo-limbic AD patterns (28 of 157 [17.8%] and 3 of 102 [2.9%], respectively). bvFTD expression was predicted by high body mass index, psychomotor slowing, affective disinhibition, and paranoid ideation (R2 = 0.11). The schizophrenia pattern was expressed in 92 of 108 patients (85.5%) with bvFTD and was linked to the C9orf72 variant, oligoclonal banding in the cerebrospinal fluid, cognitive impairment, and younger age (R2 = 0.29). bvFTD and schizophrenia pattern expressions forecasted 2-year psychosocial impairments in patients with CHR and were predicted by polygenic risk scores for frontotemporal dementia, AD, and schizophrenia. Findings were not associated with AD or accelerated brain aging. Finally, 1-year bvFTD/schizophrenia pattern progression distinguished patients with nonrecovery from those with preserved recovery.Conclusions and RelevanceNeurobiological links may exist between bvFTD and psychosis focusing on prefrontal and salience system alterations. Further transdiagnostic investigations are needed to identify shared pathophysiological processes underlying the neuroanatomical interface between the 2 disease spectra.</p

    Mechanical design of the optical modules intended for IceCube-Gen2

    Get PDF
    IceCube-Gen2 is an expansion of the IceCube neutrino observatory at the South Pole that aims to increase the sensitivity to high-energy neutrinos by an order of magnitude. To this end, about 10,000 new optical modules will be installed, instrumenting a fiducial volume of about 8 km3. Two newly developed optical module types increase IceCube’s current sensitivity per module by a factor of three by integrating 16 and 18 newly developed four-inch PMTs in specially designed 12.5-inch diameter pressure vessels. Both designs use conical silicone gel pads to optically couple the PMTs to the pressure vessel to increase photon collection efficiency. The outside portion of gel pads are pre-cast onto each PMT prior to integration, while the interiors are filled and cast after the PMT assemblies are installed in the pressure vessel via a pushing mechanism. This paper presents both the mechanical design, as well as the performance of prototype modules at high pressure (70 MPa) and low temperature (−40∘C), characteristic of the environment inside the South Pole ice

    Cross Correlation of IceCube Neutrinos with Tracers of Large Scale Structure

    Get PDF
    The origin of most astrophysical neutrinos is unknown, but extragalactic neutrino sources may follow the spatial distribution of the large-scale structure of the universe. Galaxies also follow the same large scale distribution, so establishing a correlation between galaxies and IceCube neutrinos could help identify the origins of the diffuse neutrinos observed by IceCube. Following a preliminary study based on the WISE and 2MASS catalogs, we will investigate an updated galaxy catalog with improved redshift measurements and reduced stellar contamination. Our IceCube data sample consists of track-like muon neutrinos selected from the Northern sky. The excellent angular resolution of track-like events and low contamination with atmospheric muons is necessary for the sensitivity of the analysis. Unlike a point source stacking analysis, the calculation of the cross correlation does not scale with the number of entries in the catalog, making the work tractable for catalogs with millions of objects. We present the development and performance of a two-point cross correlation of IceCube neutrinos with a tracer of the large scale structure

    The next generation neutrino telescope: IceCube-Gen2

    Get PDF
    The IceCube Neutrino Observatory, a cubic-kilometer-scale neutrino detector at the geographic South Pole, has reached a number of milestones in the field of neutrino astrophysics: the discovery of a high-energy astrophysical neutrino flux, the temporal and directional correlation of neutrinos with a flaring blazar, and a steady emission of neutrinos from the direction of an active galaxy of a Seyfert II type and the Milky Way. The next generation neutrino telescope, IceCube-Gen2, currently under development, will consist of three essential components: an array of about 10,000 optical sensors, embedded within approximately 8 cubic kilometers of ice, for detecting neutrinos with energies of TeV and above, with a sensitivity five times greater than that of IceCube; a surface array with scintillation panels and radio antennas targeting air showers; and buried radio antennas distributed over an area of more than 400 square kilometers to significantly enhance the sensitivity of detecting neutrino sources beyond EeV. This contribution describes the design and status of IceCube-Gen2 and discusses the expected sensitivity from the simulations of the optical, surface, and radio components

    Sensitivity of IceCube-Gen2 to measure flavor composition of Astrophysical neutrinos

    Get PDF
    The observation of an astrophysical neutrino flux in IceCube and its detection capability to separate between the different neutrino flavors has led IceCube to constraint the flavor content of this flux. IceCube-Gen2 is the planned extension of the current IceCube detector, which will be about 8 times larger than the current instrumented volume. In this work, we study the sensitivity of IceCube-Gen2 to the astrophysical neutrino flavor composition and investigate its tau neutrino identification capabilities. We apply the IceCube analysis on a simulated IceCube-Gen2 dataset that mimics the High Energy Starting Event (HESE) classification. Reconstructions are performed using sensors that have 3 times higher quantum efficiency and isotropic angular acceptance compared to the current IceCube optical modules. We present the projected sensitivity for 10 years of data on constraining the flavor ratio of the astrophysical neutrino flux at Earth by IceCube-Gen2

    Direction reconstruction performance for IceCube-Gen2 Radio

    Get PDF
    The IceCube-Gen2 facility will extend the energy range of IceCube to ultra-high energies. The key component to detect neutrinos with energies above 10 PeV is a large array of in-ice radio detectors. In previous work, direction reconstruction algorithms using the forward-folding technique have been developed for both shallow (≲20 m) and deep in-ice detectors, and have also been successfully used to reconstruct cosmic rays with ARIANNA. Here, we focus on the reconstruction algorithm for the deep in-ice detector, which was recently introduced in the context of the Radio Neutrino Observatory in Greenland (RNO-G)

    Estimating the coincidence rate between the optical and radio array of IceCube-Gen2

    Get PDF
    The IceCube-Gen2 Neutrino Observatory is proposed to extend the all-flavour energy range of IceCube beyond PeV energies. It will comprise two key components: I) An enlarged 8km3 in-ice optical Cherenkov array to measure the continuation of the IceCube astrophysical neutrino flux and improve IceCube\u27s point source sensitivity above ∼100TeV; and II) A very large in-ice radio array with a surface area of about 500km2. Radio waves propagate through ice with a kilometer-long attenuation length, hence a sparse radio array allows us to instrument a huge volume of ice to achieve a sufficient sensitivity to detect neutrinos with energies above tens of PeV. The different signal topologies for neutrino-induced events measured by the optical and in-ice radio detector - the radio detector is mostly sensitive to the cascades produced in the neutrino interaction, while the optical detector can detect long-ranging muon and tau leptons with high accuracy - yield highly complementary information. When detected in coincidence, these signals will allow us to reconstruct the neutrino energy and arrival direction with high fidelity. Furthermore, if events are detected in coincidence with a sufficient rate, they resemble the unique opportunity to study systematic uncertainties and to cross-calibrate both detector components
    corecore