21 research outputs found

    Transient dynamics of a molecular quantum dot with a vibrational degree of freedom

    Full text link
    We investigate the transient effects occurring in a molecular quantum dot described by an Anderson-Holstein Hamiltonian which is instantly coupled to two fermionic leads biased by a finite voltage. In the limit of weak electron-phonon interaction, we use perturbation theory to determine the time-dependence of the dot population and the average current. The limit of strong coupling is accessed by means of a self-consistent time-dependent mean-field approximation. These comple- mentary approaches allow us to investigate the dynamics of the inelastic effects occurring when the applied bias voltage exceeds the phonon frequency and the emergence of bistability.Comment: 7 pages, 4 figure

    Discrete control of capacitance in quantum circuits

    Full text link
    Precise in-situ control of system parameters is indispensable for all quantum hardware applications. The capacitance in a circuit, however, is usually a simple consequence of electrostatics, and thus quite literally cast in stone. We here propose a way to control the charging energy of a given island by exploiting recently predicted Chern insulator physics in common Cooper-pair transistors, where the capacitance switches between discrete values given by the Chern number. We identify conditions for which the discrete control benefits from exponentially reduced noise sensitivity to implement protected tunable qubits.Comment: 5 pages, 2 figures, supplementary material at the end of the document. Comments and feedback are highly welcom

    Optimal configurations for normal-metal traps in transmon qubits

    Full text link
    Controlling quasiparticle dynamics can improve the performance of superconducting devices. For example, it has been demonstrated effective in increasing lifetime and stability of superconducting qubits. Here we study how to optimize the placement of normal-metal traps in transmon-type qubits. When the trap size increases beyond a certain characteristic length, the details of the geometry and trap position, and even the number of traps, become important. We discuss for some experimentally relevant examples how to shorten the decay time of the excess quasiparticle density. Moreover, we show that a trap in the vicinity of a Josephson junction can reduce the steady-state quasiparticle density near that junction, thus suppressing the quasiparticle-induced relaxation rate of the qubit. Such a trap also reduces the impact of fluctuations in the generation rate of quasiparticles, rendering the qubit more stable.Comment: 16 pages, 7 figures; to appear in Phys. Rev. Applie

    Normal-metal quasiparticle traps for superconducting qubits

    Get PDF
    The presence of quasiparticles in superconducting qubits emerges as an intrinsic constraint on their coherence. While it is difficult to prevent the generation of quasiparticles, keeping them away from active elements of the qubit provides a viable way of improving the device performance. Here we develop theoretically and validate experimentally a model for the effect of a single small trap on the dynamics of the excess quasiparticles injected in a transmon-type qubit. The model allows one to evaluate the time it takes to evacuate the injected quasiparticles from the transmon as a function of trap parameters. With the increase of the trap size, this time decreases monotonically, saturating at the level determined by the quasiparticles diffusion constant and the qubit geometry. We determine the characteristic trap size needed for the relaxation time to approach that saturation value.Comment: 11 pages, 5 figure

    Efficient quasiparticle traps with low dissipation through gap engineering

    No full text
    Quasiparticles represent an intrinsic source of perturbation for superconducting qubits, leading to both dissipation of the qubit energy and dephasing. Recently, it has been shown that normal-metal traps may efficiently reduce the quasiparticle population and improve the qubit lifetime, provided the trap surpasses a certain characteristic size. Moreover, while the trap itself introduces new relaxation mechanisms, they are not expected to harm state-of-the-art transmon qubits under the condition that the traps are not placed too close to extremal positions where electric fields are high. Here we study a different type of trap, realized through gap engineering. We find that gap-engineered traps relax the remaining constraints imposed on normal metal traps. First, the characteristic trap size, above which the trap is efficient, is reduced with respect to normal metal traps, such that here, strong traps are possible in smaller devices. Second, the losses caused by the trap are now greatly reduced, providing more flexibility in trap placement. The latter point is of particular importance, since for efficient protection from quasiparticles, the traps ideally should be placed close to the active parts of the qubit device, where electric fields are typically high

    Circuit quantization with time-dependent magnetic fields for realistic geometries

    No full text
    corecore