96 research outputs found

    Exploiting liver immunity for the prevention of hepatic metastases

    Get PDF
    Over the last decade immunotherapy has progressively gained a significant clinical interest for cancer treatment. The actual benefit of active immunotherapy, namely cancer vaccines, has been repeatedly claimed as effective in several settings and prompted prospective investigations (phase III clinical trials) currently ongoing in patients with prostate carcinoma, melanoma, and lung cancer, while the first vaccine for the treatment of metastatic prostate carcinoma has been recently approved by the FDA [1,2]. Adoptive immunotherapy, based on the administration of antibodies (Ab) targeting tumor receptors or molecules expressed in the microenvironment, has also entered clinical practice in several cancers such as breast carcinoma, colorectal cancer, and haematological tumors [3], whereas adoptive transfer of ex vivo activated tumor-specific T cells has shown dramatic efficacy in metastatic melanoma [4], a known benchmark-tumor for immune manipulations both in animal and human models. Ab-therapy of cancer was initially conceived to directly eliminate tumor cells by interfering with the activity of either receptors involved in cancer cell proliferation (e.g. members of the HER family) or molecules regulating tumor blood supply (such in the case of anti-VEGF Ab) [5]. However, the clinical efficacy of broadly used Ab was subsequently found to rely, at least in part, on the contribution of the immune system through the activation of antibody-dependent cell cytotoxicity (ADCC) mediated by cellular components of innate immunity [5,6]. NK cells, monocytes, macrophages, and granulocytes can indeed bind to Ab thanks to the expression of specific receptors for the invariant portion of this molecule (the so called Fc portion) and be recruited to attack target cells, hence contributing to the therapeutic potential of Abbased therapies. Evidence proving such mechanism has been collected in preclinical studies, showing that anti-tumor antibodies, like trastuzumab, have reduced activity when administered in FcR knock-out mice or used in a FcR-binding defective form. Similarly in clinical setting, breast cancer trials have reported immune infiltrate in cancer lesions of Ab-treated patients, and better efficacy in subjects expressing defined FcR genotypes [6]. More recently, the anti-tumor activity of such strategy has been also potentiated through bi-specific engineered single-chain Ab designed to tether cytotoxic T lymphocytes to cancer cells, a

    Extracellular vesicles in anti-tumor immunity

    Get PDF
    To what extent extracellular vesicles (EVs) can impact anti-tumor immune responses has only started to get unraveled. Their nanometer dimensions, their growing number of subtypes together with the difficulties in defining their origin hampers their investigation. The existence of tumor cell lines facilitated advance in cancer EV understanding, while capturing information about phenotypes and functions of immune cell EVs in this context is more complex. The advent of immunotherapy with immune checkpoint inhibitors has further deepened the need to dissect the impact of EVs during immune activation and response, not least to contribute unraveling and preventing the generation of resistance occurring in the majority of patients. Here we discuss the factors that influence/drive the immune response in cancer patients in the context of cancer therapeutics and the roles or possible functions EVs can have in this scenario. With immune cell-derived EVs as leitmotiv we will journey from EV discovery and subtypes through their physiological and pathological non-cancer functions to their similarities with cancer EVs and on how to revert their detrimental consequences on immune responses to cancer

    Cancer acidity: An ultimate frontier of tumor immune escape and a novel target of immunomodulation

    Get PDF
    The link between cancer metabolism and immunosuppression, inflammation and immune escape has generated major interest in investigating the effects of low pH on tumor immunity. Indeed, microenvironmental acidity may differentially impact on diverse components of tumor immune surveillance, eventually contributing to immune escape and cancer progression. Although the molecular pathways underlying acidity-related immune dysfunctions are just emerging, initial evidence indicates that antitumor effectors such as T and NK cells tend to lose their function and undergo a state of mostly reversible anergy followed by apoptosis, when exposed to low pH environment. At opposite, immunosuppressive components such as myeloid cells and regulatory T cells are engaged by tumor acidity to sustain tumor growth while blocking antitumor immune responses. Local acidity could also profoundly influence bioactivity and distribution of antibodies, thus potentially interfering with the clinical efficacy of therapeutic antibodies including immune checkpoint inhibitors. Hence tumor acidity is a central regulator of cancer immunity that orchestrates both local and systemic immunosuppression and that may offer a broad panel of therapeutic targets. This review outlines the fundamental pathways of acidity-driven immune dysfunctions and sheds light on the potential strategies that could be envisaged to potentiate immune-mediated tumor control in cancer patients

    T cell responses against tumor associated antigens and prognosis in colorectal cancer patients

    Get PDF
    INTRODUCTION: Spontaneous T cell responses against specific tumor-associated antigens (TAA) are frequently detected in peripheral blood of tumor patients of various histiotypes. However, little is known about whether these circulating, spontaneously occurring, TAA-reactive T cells influence the clinical course of disease. METHODS: Fifty-four HLA-A2 positive colorectal cancer patients had been analyzed for the presence of T cell responses against epitopes derived from the TAA Ep-CAM, her-2/neu, and CEA either by ELISPOT assay or by intracellular cytokine staining. Then, Kaplan-Meier survival analysis was performed comparing T-cell-responders and T-cell-non-responders. For comparison, a group of T-cell-non-responders was compiled stringently matched to T-cell-responders based on clinical criteria and also analyzed for survival. RESULTS: Sixteen out of 54 patients had a detectable T cell response against at least one of the three tested TAA. Two out of 21 patients (9.5%) with limited stage of disease (UICC I and II) and 14 out of 33 patients (42.4%) with advanced disease (UICC III and IV) were T cell response positive. Comparing all T-cell-responders (n = 16) and all T-cell-non-responders (n = 38), no survival difference was found. In an attempt to reduce the influence of confounding clinical factors, we then compared 16 responders and 16 non-responders in a matched group survival analysis; and again no survival difference was found (p = 0.7). CONCLUSION: In summary, we found no evidence that spontaneous peripheral T cell responses against HLA-A2-binding epitopes of CEA, her-2/neu and Ep-CAM are a strong prognostic factor for survival

    Natural Killer and NK-Like T-Cell Activation in Colorectal Carcinoma Patients Treated with Autologous Tumor-Derived Heat Shock Protein 96

    Get PDF
    Heat shock proteins (HSPs) are involved in the activation of both adaptive and innate immune systems. Here, we report that vaccination with autologous tumor-derived HSP96 of colorectal cancer patients, radically resected for liver metastases, induced a significant boost of natural killer (NK) activity detected as cytokine secretion and cytotoxicity in the presence of NK-sensitive targets. Increased NK activity was associated with a raise in CD3−CD56+ NK and/or CD3+CD56+ NK-like T cells, displaying enhanced expression of NKG2D and/or NKp46 receptors. Up-regulated expression of CD83 and CD40 and increased interleukin-12 release on stimulation were observed in CD14+ cells from post-HSP96 peripheral blood mononuclear cells, suggesting an indirect pathway of NK stimulation by HSP96-activated monocytes. Additionally, CD3−CD56+ and CD3+CD56+ lymphocytes were found to undergo functional and phenotypic activation on in vitro exposure to HSP96 even in the absence of monocytes, supporting a potential direct activity of HSP96 on these cell subsets. This evidence was confirmed by the specific binding of FITC-conjugated HSP96 to a subset of both CD3−CD56+ and CD3+CD56+ cells in peripheral blood mononuclear cells from colorectal cancer patients. Altogether, these findings identify the activation of the NK compartment as an additional immunologic effect of autologous tumor-derived HSP96 administration in cancer patients

    Proton dynamics in cancer

    Get PDF
    Cancer remains a leading cause of death in the world today. Despite decades of research to identify novel therapeutic approaches, durable regressions of metastatic disease are still scanty and survival benefits often negligible. While the current strategy is mostly converging on target-therapies aimed at selectively affecting altered molecular pathways in tumor cells, evidences are in parallel pointing to cell metabolism as a potential Achilles' heel of cancer, to be disrupted for achieving therapeutic benefit. Critical differences in the metabolism of tumor versus normal cells, which include abnormal glycolysis, high lactic acid production, protons accumulation and reversed intra-extracellular pH gradients, make tumor site a hostile microenvironment where only cancer cells can proliferate and survive. Inhibiting these pathways by blocking proton pumps and transporters may deprive cancer cells of a key mechanism of detoxification and thus represent a novel strategy for a pleiotropic and multifaceted suppression of cancer cell growth

    3D tumor explant as a novel platform to investigate therapeutic pathways and predictive biomarkers in cancer patients

    Get PDF
    Immunotherapy with immune checkpoint inhibitors can induce durable clinical responses in different human malignancies but the number of responding patients remains globally modest. The limited therapeutic efficacy of ICI depends on multiple factors, among which the immune suppressive features of the tumor microenvironment play a key role. For this reason, experimental models that enable dissection of the immune-hostile tumor milieu components are required to unravel how to overcome resistance and obtain full-fledged anti-tumor immunity. Recent evidence supports the usefulness of 3D ex vivo systems in retaining features of tumor microenvironment to elucidate molecular and immunologic mechanisms of response and resistance to immune checkpoint blockade. In this perspective article we discuss the recent advances in patient-derived 3D tumor models and their potential in support of treatment decision making in clinical setting. We will also share our experience with dynamic bioreactor tumor explant culture of samples from melanoma and sarcoma patients as a reliable and promising platform to unravel immune responses to immune checkpoint inhibitors
    • …
    corecore