808 research outputs found

    The perimeter of large planar Voronoi cells: a double-stranded random walk

    Full text link
    Let p_np\_n be the probability for a planar Poisson-Voronoi cell to have exactly nn sides. We construct the asymptotic expansion of logp_n\log p\_n up to terms that vanish as nn\to\infty. We show that {\it two independent biased random walks} executed by the polar angle determine the trajectory of the cell perimeter. We find the limit distribution of (i) the angle between two successive vertex vectors, and (ii) the one between two successive perimeter segments. We obtain the probability law for the perimeter's long wavelength deviations from circularity. We prove Lewis' law and show that it has coefficient 1/4.Comment: Slightly extended version; journal reference adde

    Process algebra modelling styles for biomolecular processes

    Get PDF
    We investigate how biomolecular processes are modelled in process algebras, focussing on chemical reactions. We consider various modelling styles and how design decisions made in the definition of the process algebra have an impact on how a modelling style can be applied. Our goal is to highlight the often implicit choices that modellers make in choosing a formalism, and illustrate, through the use of examples, how this can affect expressability as well as the type and complexity of the analysis that can be performed

    Statistical Mechanics of Two-dimensional Foams

    Get PDF
    The methods of statistical mechanics are applied to two-dimensional foams under macroscopic agitation. A new variable -- the total cell curvature -- is introduced, which plays the role of energy in conventional statistical thermodynamics. The probability distribution of the number of sides for a cell of given area is derived. This expression allows to correlate the distribution of sides ("topological disorder") to the distribution of sizes ("geometrical disorder") in a foam. The model predictions agree well with available experimental data

    Analysis of signalling pathways using continuous time Markov chains

    Get PDF
    We describe a quantitative modelling and analysis approach for signal transduction networks. We illustrate the approach with an example, the RKIP inhibited ERK pathway [CSK+03]. Our models are high level descriptions of continuous time Markov chains: proteins are modelled by synchronous processes and reactions by transitions. Concentrations are modelled by discrete, abstract quantities. The main advantage of our approach is that using a (continuous time) stochastic logic and the PRISM model checker, we can perform quantitative analysis such as what is the probability that if a concentration reaches a certain level, it will remain at that level thereafter? or how does varying a given reaction rate affect that probability? We also perform standard simulations and compare our results with a traditional ordinary differential equation model. An interesting result is that for the example pathway, only a small number of discrete data values is required to render the simulations practically indistinguishable

    Asymptotic statistics of the n-sided planar Poisson-Voronoi cell. I. Exact results

    Full text link
    We achieve a detailed understanding of the nn-sided planar Poisson-Voronoi cell in the limit of large nn. Let p_n{p}\_n be the probability for a cell to have nn sides. We construct the asymptotic expansion of logp_n\log {p}\_n up to terms that vanish as nn\to\infty. We obtain the statistics of the lengths of the perimeter segments and of the angles between adjoining segments: to leading order as nn\to\infty, and after appropriate scaling, these become independent random variables whose laws we determine; and to next order in 1/n1/n they have nontrivial long range correlations whose expressions we provide. The nn-sided cell tends towards a circle of radius (n/4\pi\lambda)^{\half}, where λ\lambda is the cell density; hence Lewis' law for the average area A_nA\_n of the nn-sided cell behaves as A_ncn/λA\_n \simeq cn/\lambda with c=1/4c=1/4. For nn\to\infty the cell perimeter, expressed as a function R(ϕ)R(\phi) of the polar angle ϕ\phi, satisfies d2R/dϕ2=F(ϕ)d^2 R/d\phi^2 = F(\phi), where FF is known Gaussian noise; we deduce from it the probability law for the perimeter's long wavelength deviations from circularity. Many other quantities related to the asymptotic cell shape become accessible to calculation.Comment: 54 pages, 3 figure

    On Random Bubble Lattices

    Full text link
    We study random bubble lattices which can be produced by processes such as first order phase transitions, and derive characteristics that are important for understanding the percolation of distinct varieties of bubbles. The results are relevant to the formation of topological defects as they show that infinite domain walls and strings will be produced during appropriate first order transitions, and that the most suitable regular lattice to study defect formation in three dimensions is a face centered cubic lattice. Another application of our work is to the distribution of voids in the large-scale structure of the universe. We argue that the present universe is more akin to a system undergoing a first-order phase transition than to one that is crystallizing, as is implicit in the Voronoi foam description. Based on the picture of a bubbly universe, we predict a mean coordination number for the voids of 13.4. The mean coordination number may also be used as a tool to distinguish between different scenarios for structure formation.Comment: several modifications including new abstract, comparison with froth models, asymptotics of coordination number distribution, further discussion of biased defects, and relevance to large-scale structur

    2C-B: A New Psychoactive Phenylethylamine Recently Discovered in Ecstasy Tablets Sold on the Swiss Black Market

    Get PDF
    This study sought to identify, by means of several analytical methods (GC-MS, HPLC-DAD, CE-DAD, FTIR, and NMR), 4-bromo-2,5-dimethoxyphenethylamine (2C-B), which was found in two sets of tablets obtained from the Swiss black market. Unequivocal identification of 2C-B was only achieved by a combination of mass spectrometric and NMR analysis. Quantitation of 2C-B was performed by HPLC-DAD and CE-DAD. The amounts of 2C-B found in the tablets (3-8 mg) were in the range of the minimum quantity required to induce the effects characteristic of this dru

    Asymptotic statistics of the n-sided planar Voronoi cell: II. Heuristics

    Full text link
    We develop a set of heuristic arguments to explain several results on planar Poisson-Voronoi tessellations that were derived earlier at the cost of considerable mathematical effort. The results concern Voronoi cells having a large number n of sides. The arguments start from an entropy balance applied to the arrangement of n neighbors around a central cell. It is followed by a simplified evaluation of the phase space integral for the probability p_n that an arbitrary cell be n-sided. The limitations of the arguments are indicated. As a new application we calculate the expected number of Gabriel (or full) neighbors of an n-sided cell in the large-n limit.Comment: 22 pages, 10 figure

    The Suprafroth (Superconducting Froth)

    Full text link
    The structure and dynamics of froths have been subjects of intense interest due to the desire to understand the behaviour of complex systems where topological intricacy prohibits exact evaluation of the ground state. The dynamics of a traditional froth involves drainage and drying in the cell boundaries, thus it is irreversible. We report a new member to the froths family: suprafroth, in which the cell boundaries are superconducting and the cell interior is normal phase. Despite very different microscopic origin, topological analysis of the structure of the suprafroth shows that statistical von Neumann and Lewis laws apply. Furthermore, for the first time in the analysis of froths there is a global measurable property, the magnetic moment, which can be directly related to the suprafroth structure. We propose that this suprafroth is a new, model system for the analysis of the complex physics of two-dimensional froths

    The frustration-based approach of supercooled liquids and the glass transition: a review and critical assessment

    Full text link
    One of the most spectacular phenomena in physics in terms of dynamical range is the glass transition and the associated slowing down of flow and relaxation with decreasing temperature. That it occurs in many different liquids seems to call for a "universal" theory. In this article, we review one such theoretical approach which is based on the concept of "frustration". Frustration in this context describes an incompatibility between extension of the locally preferred order in a liquid and tiling of the whole space. We provide a critical assessment of what has been achieved within this approach and we discuss the relation with other theories of the glass transition.Comment: 48 pages, 13 figures, submitted to J. Phys : Cond. Matte
    corecore