773 research outputs found

    Quantum-noise--randomized data-encryption for WDM fiber-optic networks

    Full text link
    We demonstrate high-rate randomized data-encryption through optical fibers using the inherent quantum-measurement noise of coherent states of light. Specifically, we demonstrate 650Mbps data encryption through a 10Gbps data-bearing, in-line amplified 200km-long line. In our protocol, legitimate users (who share a short secret-key) communicate using an M-ry signal set while an attacker (who does not share the secret key) is forced to contend with the fundamental and irreducible quantum-measurement noise of coherent states. Implementations of our protocol using both polarization-encoded signal sets as well as polarization-insensitive phase-keyed signal sets are experimentally and theoretically evaluated. Different from the performance criteria for the cryptographic objective of key generation (quantum key-generation), one possible set of performance criteria for the cryptographic objective of data encryption is established and carefully considered.Comment: Version 2: Some errors have been corrected and arguments refined. To appear in Physical Review A. Version 3: Minor corrections to version

    Public Evidence from Secret Ballots

    Full text link
    Elections seem simple---aren't they just counting? But they have a unique, challenging combination of security and privacy requirements. The stakes are high; the context is adversarial; the electorate needs to be convinced that the results are correct; and the secrecy of the ballot must be ensured. And they have practical constraints: time is of the essence, and voting systems need to be affordable and maintainable, and usable by voters, election officials, and pollworkers. It is thus not surprising that voting is a rich research area spanning theory, applied cryptography, practical systems analysis, usable security, and statistics. Election integrity involves two key concepts: convincing evidence that outcomes are correct and privacy, which amounts to convincing assurance that there is no evidence about how any given person voted. These are obviously in tension. We examine how current systems walk this tightrope.Comment: To appear in E-Vote-Id '1

    Flexible Session Management in a Distributed Environment

    Full text link
    Many secure communication libraries used by distributed systems, such as SSL, TLS, and Kerberos, fail to make a clear distinction between the authentication, session, and communication layers. In this paper we introduce CEDAR, the secure communication library used by the Condor High Throughput Computing software, and present the advantages to a distributed computing system resulting from CEDAR's separation of these layers. Regardless of the authentication method used, CEDAR establishes a secure session key, which has the flexibility to be used for multiple capabilities. We demonstrate how a layered approach to security sessions can avoid round-trips and latency inherent in network authentication. The creation of a distinct session management layer allows for optimizations to improve scalability by way of delegating sessions to other components in the system. This session delegation creates a chain of trust that reduces the overhead of establishing secure connections and enables centralized enforcement of system-wide security policies. Additionally, secure channels based upon UDP datagrams are often overlooked by existing libraries; we show how CEDAR's structure accommodates this as well. As an example of the utility of this work, we show how the use of delegated security sessions and other techniques inherent in CEDAR's architecture enables US CMS to meet their scalability requirements in deploying Condor over large-scale, wide-area grid systems

    Generation of eigenstates using the phase-estimation algorithm

    Get PDF
    The phase estimation algorithm is so named because it allows the estimation of the eigenvalues associated with an operator. However it has been proposed that the algorithm can also be used to generate eigenstates. Here we extend this proposal for small quantum systems, identifying the conditions under which the phase estimation algorithm can successfully generate eigenstates. We then propose an implementation scheme based on an ion trap quantum computer. This scheme allows us to illustrate two simple examples, one in which the algorithm effectively generates eigenstates, and one in which it does not.Comment: 5 pages, 3 Figures, RevTeX4 Introduction expanded, typos correcte

    Allelopathy And Weed Competition

    Get PDF
    Currently, only two herbicides, Londax® (bensulfuron) and Taipan® (benzofenap) are available for the effective control of all four major broadleaf weeds infesting NSW rice paddocks. Prolonged and widespread use of these two herbicides in the rice growing regions increases the threat of herbicide resistance. The low likelihood of new herbicides in the foreseeable future increases the impact of herbicide resistance on the Australian rice industry. Allelopathy, chemical interactions between plants, is an alternative control option. Weeds could be controlled by using crops which have been developed to exert their own weed control by releasing chemicals into the soil. These naturally occurring compounds could play a valuable role in an integrated weed management system, potentially reducing the amount of synthetic herbicides required for weed control. In rice, the potential use of allelopathy in weed control has been explored by several researchers worldwide. Funding for work on allelopathic potential was provided by the Rice CRC as they recognised that the Australian weed community is very different and many of the weeds infesting rice paddocks are typically Australian problems not likely to be tackled by international research groups. Twenty-seven rice cultivars were examined in the laboratory for their allelopathic potential against several currently important and potentially important rice weeds in Australia, namely barnyard grass (Echinochloa crus-galli), dirty dora (Cyperus difformis), lance-leaved water plantain (Alisma lanceolatum), starfruit (Damasonium minus), arrowhead (Sagittaria montevidensis) and S. graminea. Weed root growth inhibition ranged from 0.3 % to 93.6 % of the control depending on the cultivar and the weed species being tested. One weed was actually stimulated by Langi. Several rice varieties significantly inhibited root growth of more than one weed. A field trial using starfruit as the test species was conducted to see if those cultivars which inhibited starfruit in the laboratory experiment also inhibited starfruit in the field and to determine whether allelopathy was an important factor in the resulting field performance. Twenty-four cultivars were used in a field trial based at the Yanco Agricultural Institute. Starfruit dry matter was measured as an indicator of weed inhibition. It was found that there was a correlation between laboratory and field results, and that allelopathy was an important contributor to field performance of a rice variety

    Secure Mobile Support of Independent Sales Agencies

    Get PDF
    Sales agents depend on mobile support systems for their daily work. Independent sales agencies, however, are not able to facilitate this kind of mobile support on their own due to their small size and lack of the necessary funds. Since their processes correlate with confidential information and include the initiation and alteration of legally binding transactions they have a high need for security. In this contribution we first propose an IT-artifact consisting of a service platform that supports multi-vendor sales processes based on previous work. We then analyze use cases of sales representatives of independent sales agencies using this system and derive their security requirements. We then propose a security extension to the IT-artifact and evaluate this extension by comparing it to existing solutions. Our results show that the proposed artifact extension provides a more convenient and secure solution than already existing approaches

    Dynamics of conflicts in Wikipedia

    Get PDF
    In this work we study the dynamical features of editorial wars in Wikipedia (WP). Based on our previously established algorithm, we build up samples of controversial and peaceful articles and analyze the temporal characteristics of the activity in these samples. On short time scales, we show that there is a clear correspondence between conflict and burstiness of activity patterns, and that memory effects play an important role in controversies. On long time scales, we identify three distinct developmental patterns for the overall behavior of the articles. We are able to distinguish cases eventually leading to consensus from those cases where a compromise is far from achievable. Finally, we analyze discussion networks and conclude that edit wars are mainly fought by few editors only.Comment: Supporting information adde

    From quantum cellular automata to quantum lattice gases

    Get PDF
    A natural architecture for nanoscale quantum computation is that of a quantum cellular automaton. Motivated by this observation, in this paper we begin an investigation of exactly unitary cellular automata. After proving that there can be no nontrivial, homogeneous, local, unitary, scalar cellular automaton in one dimension, we weaken the homogeneity condition and show that there are nontrivial, exactly unitary, partitioning cellular automata. We find a one parameter family of evolution rules which are best interpreted as those for a one particle quantum automaton. This model is naturally reformulated as a two component cellular automaton which we demonstrate to limit to the Dirac equation. We describe two generalizations of this automaton, the second of which, to multiple interacting particles, is the correct definition of a quantum lattice gas.Comment: 22 pages, plain TeX, 9 PostScript figures included with epsf.tex (ignore the under/overfull \vbox error messages); minor typographical corrections and journal reference adde
    corecore