2,282 research outputs found

    The packing of granular polymer chains

    Full text link
    Rigid particles pack into structures, such as sand dunes on the beach, whose overall stability is determined by the average number of contacts between particles. However, when packing spatially extended objects with flexible shapes, additional concepts must be invoked to understand the stability of the resulting structure. Here we study the disordered packing of chains constructed out of flexibly-connected hard spheres. Using X-ray tomography, we find long chains pack into a low-density structure whose mechanical rigidity is mainly provided by the backbone. On compaction, randomly-oriented, semi-rigid loops form along the chain, and the packing of chains can be understood as the jamming of these elements. Finally we uncover close similarities between the packing of chains and the glass transition in polymers.Comment: 11 pages, 4 figure

    Classical Physics and Quantum Loops

    Get PDF
    The standard picture of the loop expansion associates a factor of h-bar with each loop, suggesting that the tree diagrams are to be associated with classical physics, while loop effects are quantum mechanical in nature. We discuss examples wherein classical effects arise from loop contributions and display the relationship between the classical terms and the long range effects of massless particles.Comment: 15 pages, 3 figure

    Optimized perturbation theory for charged scalar fields at finite temperature and in an external magnetic field

    Full text link
    Symmetry restoration in a theory of a self-interacting charged scalar field at finite temperature and in the presence of an external magnetic field is examined. The effective potential is evaluated nonperturbatively in the context of the optimized perturbation theory method. It is explicitly shown that in all ranges of the magnetic field, from weak to large fields, the phase transition is second order and that the critical temperature increases with the magnetic field. In addition, we present an efficient way to deal with the sum over the Landau levels, which is of interest especially in the case of working with weak magnetic fields.Comment: 18 pages, 7 eps figures. References added and some small improvements to the tex

    From toothpick legs to dropping vaginas: Gender and sexuality in Joan Rivers' stand-up comedy performance

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2011 Intellect.This article employs sociocultural analysis to examine Joan Rivers’ stand-up comedy performances in order to reveal how she successfully operates in a sphere of artistic expression that has been, and continues to be, male-dominated. The analysis uncovers how Rivers’ stand-up comedy performance involves a complex combination of elements and how it fuses features that are regarded as ‘traditionally masculine’, such as aggression, with features frequently used by other female stand-up comedians, such as self-deprecating comedy and confessional comedy. Furthermore, the analysis exposes the complex ways in which constructions of gender and sexuality are negotiated and re-negotiated in Rivers’ stand-up comedy performance, and illustrates how dominant ideological identity constructions can be simultaneously reinforced and subverted within the same comic moment

    Winding Number Correlation Functions and Cosmic String Formation

    Get PDF
    We develop winding number correlation functions that allow us to assess the role of field fluctuations on vortex formation in an Abelian gauge theory. We compute the behavior of these correlation functions in simple circumstances and show how fluctuations are important in the vicinity of the phase transition. We further show that, in our approximation, the emerging population of long/infinite string is produced by the classical dynamics of the fields alone, being essentially unaffected by field fluctuations.Comment: Latex file, 27 pages. 8 figures, available in compressed form by anonymous ftp from ftp://euclid.tp.ph.ic.ac.uk/papers/94-5_39.fig Latex and postscript versions also available at http://euclid.tp.ph.ic.ac.uk/Papers/index.htm

    Finite Temperature Effective Potential for the Abelian Higgs Model to the Order e4,λ2e^4,\lambda^2

    Full text link
    A complete calculation of the finite temperature effective potential for the abelian Higgs model to the order e4,λ2e^4,\lambda^2 is presented and the result is expressed in terms of physical parameters defined at zero temperature. The absence of a linear term is verified explicitly to the given order and proven to survive to all orders. The first order phase transition has weakened in comparison with lower order calculation, which shows up in a considerable decrease of the surface tension. The only difference from the original version is the splitting of some overlong lines causing problems with certain mailers.Comment: 13 pages LaTex ( figures not included , hardcopy available on request : [email protected] or t00heb@dhhdesy3 ) , DESY 93-08
    corecore