19 research outputs found

    Astronomical X-Ray Optics Using Mono-Crystalline Silicon: High Resolution, Light Weight, and Low Cost

    Get PDF
    X-ray astronomy critically depends on X-ray optics. The capability of an X-ray telescope is largelydetermined by the point-spread function (PSF) and the photon-collection area of its mirrors, the same astelescopes in other wavelength bands. Since an X-ray telescope must be operated above the atmosphere inspace and that X-rays reflect only at grazing incidence, X-ray mirrors must be both lightweight and thin, bothof which add significant technical and engineering challenge to making an X-ray telescope. In this paper wereport our effort at NASA Goddard Space Flight Center (GSFC) of developing an approach to making an Xraymirror assembly that can be significantly better than the mirror assembly currently flying on the ChandraX-ray Observatory in each of the three aspects: PSF, effective area per unit mass, and production cost per uniteffective area. Our approach is based on the precision polishing of mono-crystalline silicon to fabricate thinand lightweight X-ray mirrors of the highest figure quality and micro-roughness, therefore, having thepotential of achieving diffraction-limited X-ray optics. When successfully developed, this approach will makeimplementable in the 2020s and 2030s many X-ray astronomical missions that are currently on the drawingboard, including sounding rocket flights such as OGRE, Explorer class missions such as STAR-X andFORCE, Probe class missions such as AXIS, TAP, and HEX-P, as well as large missions such as Lynx

    Kinematic Alignment and Bonding of Silicon Mirrors for High-Resolution Astronomical X-Ray Optics

    Get PDF
    Optics for the next generation's high-resolution, high throughput x-ray telescope requires fabrication of well-formed lightweight mirror segments and their integration at arc-second precision. Recent advances in the fabrication of silicon mirrors developed at NASA/Goddard prompted us to develop a new method of mirror alignment and integration. In this method, stiff silicon mirrors are aligned quasi-kinematically and are bonded in an interlocking fashion to produce a "meta-shell" with large collective area. We address issues of aligning and bonding mirrors with this method and show a recent result of 4 seconds-of-arc for a single pair of mirrors tested at soft x-rays

    Optical design of the Off-plane Grating Rocket Experiment

    Get PDF
    The Off-plane Grating Rocket Experiment (OGRE) is a soft X-ray spectroscopy suborbital rocket payload scheduled for launch in Q3 2020 from Wallops Flight Facility. The payload will serve as a testbed for several key technologies which can help achieve the desired performance increases for the next generation of X-ray spectrographs and other space-based missions: monocrystalline silicon X-ray mirrors developed at NASA Goddard Space Flight Center, reflection gratings manufactured at The Pennsylvania State University, and electron-multiplying CCDs developed by the Open University and XCAM Ltd. With these three technologies, OGRE hopes to obtain the highest-resolution on-sky soft X-ray spectrum to date. We discuss the optical design of the OGRE payload

    The Off-plane Grating Rocket Experiment (OGRE) system overview

    Get PDF
    The Off-plane Grating Rocket Experiment (OGRE) is a sub-orbital rocket payload that will make the highest spectral resolution astronomical observation of the soft X-ray Universe to date. Capella, OGRE鈥檚 science target, has a well-defined line emission spectrum and is frequently used as a calibration source for X-ray observatories such as Chandra. This makes Capella an excellent target to test the technologies on OGRE, many of which have not previously flown. Through the use of state-of-the-art X-ray optics, co-aligned arrays of off-plane reflection gratings, and an X-ray camera based around four Electron Multiplying CCDs, OGRE will act as a proving ground for next generation X-ray spectrometers

    Aligning, Bonding, and Testing Mirrors for Lightweight X-ray Telescopes

    Get PDF
    High-resolution, high throughput optics for x-ray astronomy entails fabrication of well-formed mirror segments and their integration with arc-second precision. In this paper, we address issues of aligning and bonding thin glass mirrors with negligible additional distortion. Stability of the bonded mirrors and the curing of epoxy used in bonding them were tested extensively. We present results from tests of bonding mirrors onto experimental modules, and on the stability of the bonded mirrors tested in x-ray. These results demonstrate the fundamental validity of the methods used in integrating mirrors into telescope module, and reveal the areas for further investigation. The alignment and integration methods are applicable to the astronomical mission concept such as STAR-X, the Survey and Time-domain Astronomical Research Explorer

    Toward Large-Area Sub-Arcsecond X-Ray Telescopes II

    Get PDF
    In order to advance significantly scientific objectives, future x-ray astronomy missions will likely call for x-ray telescopes with large aperture areas (approx. = 3 sq m) and fine angular resolution (approx. = 1"). Achieving such performance is programmatically and technologically challenging due to the mass and envelope constraints of space-borne telescopes and to the need for densely nested grazing-incidence optics. Such an x-ray telescope will require precision fabrication, alignment, mounting, and assembly of large areas (approx. = 600 sq m) of lightweight (approx. = 2 kg/sq m areal density) high-quality mirrors, at an acceptable cost (approx. = 1 M$/sq m of mirror surface area). This paper reviews relevant programmatic and technological issues, as well as possible approaches for addressing these issues-including direct fabrication of monocrystalline silicon mirrors, active (in-space adjustable) figure correction of replicated mirrors, static post-fabrication correction using ion implantation, differential erosion or deposition, and coating-stress manipulation of thin substrates

    Lynx Mission Concept Status

    Get PDF
    Lynx is a concept under study for prioritization in the 2020 Astrophysics Decadal Survey. Providing orders of magnitude increase in sensitivity over Chandra, Lynx will examine the first black holes and their galaxies, map the large-scale structure and galactic halos, and shed new light on the environments of young stars and their planetary systems. In order to meet the Lynx science goals, the telescope consists of a high-angular resolution optical assembly complemented by an instrument suite that may include a High Definition X-ray Imager, X-ray Microcalorimeter and an X-ray Grating Spectrometer. The telescope is integrated onto the spacecraft to form a comprehensive observatory concept. Progress on the formulation of the Lynx telescope and observatory configuration is reported in this paper

    Toward Large-Area Sub-Arcsecond X-Ray Telescopes

    Get PDF
    The future of x-ray astronomy depends upon development of x-ray telescopes with larger aperture areas (>1 sq m) and finer angular resolution(100 sq m) of lightweight (1 kg/sq m areal density) high quality mirrors-possibly entailing active (in-space adjustable) alignment and figure correction. This paper discusses relevant programmatic and technological issues and summarizes progress toward large area sub-arcsecond x-ray telescopes. Key words: X-ray telescopes, x-ray optics, active optics, electroactive devices, silicon mirrors, differential deposition, ion implantation

    A randomized, open-label, multicentre, phase 2/3 study to evaluate the safety and efficacy of lumiliximab in combination with fludarabine, cyclophosphamide and rituximab versus fludarabine, cyclophosphamide and rituximab alone in subjects with relapsed chronic lymphocytic leukaemia

    Get PDF
    corecore