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ABSTRACT 

X-ray astronomy critically depends on X-ray optics. The capability of an X-ray telescope is largely 
determined by the point-spread function (PSF) and the photon-collection area of its mirrors, the same as 
telescopes in other wavelength bands. Since an X-ray telescope must be operated above the atmosphere in 
space and that X-rays reflect only at grazing incidence, X-ray mirrors must be both lightweight and thin, both 
of which add significant technical and engineering challenge to making an X-ray telescope. In this paper we 
report our effort at NASA Goddard Space Flight Center (GSFC) of developing an approach to making an X-
ray mirror assembly that can be significantly better than the mirror assembly currently flying on the Chandra 
X-ray Observatory in each of the three aspects: PSF, effective area per unit mass, and production cost per unit 
effective area. Our approach is based on the precision polishing of mono-crystalline silicon to fabricate thin 
and lightweight X-ray mirrors of the highest figure quality and micro-roughness, therefore, having the 
potential of achieving diffraction-limited X-ray optics. When successfully developed, this approach will make 
implementable in the 2020s and 2030s many X-ray astronomical missions that are currently on the drawing 
board, including sounding rocket flights such as OGRE, Explorer class missions such as STAR-X and 
FORCE, Probe class missions such as AXIS, TAP, and HEX-P, as well as large missions such as Lynx.

Keywords: X-ray optics, lightweight optics, silicon mirror, meta-shell, x-ray optics 

1. INTRODUCTION

The importance of X-ray optics has been recognized since before the discovery of extra-solar X-rays in the 
early 1960s [1]. In many ways, the history of X-ray astronomy is a history of developing better X-ray optics 
to enable more powerful X-ray observatories. “Better” means improvement in one or more of the three 
metrics: better point-spread-function (PSF) or higher angular resolution, larger effective area, and lower 
production cost. Any significant improvement in one or more of these three metrics typically has enabled a 
quantum leap in capability of X-ray observatories. The three currently operating X-ray telescopes, Chandra 
[2], XMM-Newton [3], and NuSTAR [4] represent the state of the art of X-ray mirror making. Chandra’s 
mirror, made in the 1990s using the traditional “grind and polish” process and launched into space in 1999, 
has an exquisite angular resolution of 0.5” HPD, but has an extremely small effective area of only 800 cm2 for 
its very large mass of approximately 1,500 kg and large volume. XMM-Newton’s mirrors, contemporaries of 
the Chandra mirror, made of electro-formed nickel shells, has moderate angular resolution of 15” Half-Power-
Diameter (HPD) with a moderately large effective area of 1,400 cm2 per module for a mass of 450 kg. 
NuSTAR’s mirrors, however, made in the late 2000s of slumped glass sheets, has a relatively poor angular 
resolution of 58” HPD, but has an enormous equivalent effective area of 2,400 cm2 for a very small mass of 
only 35 kg per module.  
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An ideal X-ray mirror should have both good angular resolution and large effective area. It is generally the 
case, however, that angular resolution and effective area work against each other, as illustrated above by the 
three currently operational X-ray telescopes. As of the late 2010s, every X-ray astronomical mirror is a 
scientifically useful compromise of the three metrics: angular resolution, effective area, and production cost. 
The Holy Grail of X-ray astronomical optics development is to develop a process that can manufacture X-ray 
mirrors that have good angular resolution and large photon-collecting area at an affordable production cost. 
The objective of our Next Generation X-ray Optics team at NASA Goddard Space Flight Center is to develop 
such a technology.  
 
We use a few guidelines to help us effectively accomplish this objective. First, we absorb the knowledge and 
lessons learned from designing, building, and testing past mirrors, including those of Einstein [5], ROSAT 
[6], BBXRT [7], ASCA [8], Suzaku [9], XMM-Newton [5], Chandra [2], Swift/XRT [10], and NuSTAR [4]. 
Each of these mirrors represented the pinnacle of technology of its own time under its unique scientific and 
budgetary circumstance. At least in principle we must devise a process that utilizes the knowledge and the 
lessons that have been accumulated from those past missions. Second, we must make the most of available 
technologies in industry, both in terms of technical equipment and materials, avoiding to the extent possible 
requiring one of a kind equipment that must be custom-designed and –built at enormous expense and risk 
obsolescence in a short time. Third, we must devise a process that is capable of, at least in principle, reaching 
diffraction-limited performance. Given the grazing incidence nature of X-rays and the concentric-shells 
design of an astronomical X-ray mirror assembly, the diffraction-limited performance can be practically taken 
to be approximately 0.1” HPD at 1 keV. 
 
Developing an X-ray mirror-making process, from conception and maturity such that it can be used for 
implementing an X-ray telescope as part of a space observatory, is a circuitous, arduous, and expensive 
journey. Such a process must meet the many criteria that are imposed on any process that makes spaceflight 
hardware, including scientific performance, spaceflight worthiness, long term stability, not to mention 
contamination control and logistic feasibility under rigorous budgetary and schedule constraints. We have 
naturally divided our work into three distinct, yet highly related, components: technology, engineering, and 
production. They are distinct in that they each have their emphasis on meeting different aspects of the 
ensemble of requirements. They are highly related to each other in that they each in their own way impact and 
impose requirements on the others.  
 
By “technology” we mean very basic technical elements that underlie our approach. In this specific case, it 
includes four elements: mirror fabrication, mirror coating, mirror alignment, and mirror bonding. By 
“engineering” we mean the design, analysis, and testing process that take the basic technical elements of the 
technology to arrive at a design for a mirror assembly that meet all requirements, including scientific 
performance such as PSF and effective area as well spaceflight worthiness such as structural integrity and 
longer term stability, contamination control, etc. Finally, by “production” we mean the manufacture process 
that implements the design, encompassing all the logistics necessary to meet the technical and programmatic 
requirements imposed on making an X-ray mirror assembly.  

2. TECHNOLOGY 

Mirror Fabrication Technology here means four technical elements: mirror fabrication, mirror coating, 
mirror alignment, and mirror bonding. Of these four elements, mirror fabrication is the foundation of 
everything else. Taking into account all kinds of considerations, including factors such as X-ray diffraction 
limits, desires for large effective area and lightweight and thin mirrors, engineering, and production logistics, 
we have arrived at the conclusion that the dimensions of the basic mirror element of our technology should be 
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Structural Robustness Each meta-shell, consisting of a structural shell at its core and many lightweight 
mirror segments firmly attached to it, is a precision lightweight and stiff mechanical structure. As such, it is 
strong and can sustain the load typically associated with a rocket ride to space. We have done both finite 
element analysis and testing of specially designed engineering model to show that the meta-shell is indeed 
structurally sound [22]. As this technology is implemented for a specific mission where a specific rocket and 
observatory design is known, detailed analysis and testing will be necessary to further refine and validate the 
approach. 
 
Thermal Design The mirror assembly and individual mirror segments must maintain excellent thermal 
equilibrium to preserve its optical performance. The excellent thermal conductivity and the fact the each 
meta-shell is made entirely of silicon except for a trace amount of other materials, such as iridium coating and 
epoxies, which have no thermal significance, facilitate the mirror assembly to achieve excellent thermal 
equilibrium. We have done thermal modeling of a generic mirror assembly in a low Earth orbit thermal 
environment and found that the thermal gradient across a typical mirror segment is of the order of 0.002 
degrees C, sufficiently small to preserve the PSF to better than 0.2” HPD.  
 
Gravity Release Since each mirror segment, meta-shell, and the entire mirror assembly are, out of necessity, 
built and tested on the ground where gravity always exists, the mirror segment will necessarily change its 
figure upon entering space where gravity disappears. The four-point support of each mirror segment is the key 
to minimize gravity release error. We have done a preliminary analysis of a mirror assembly and found that 
PSF degradation of a mirror assembly made of 0.5mm thick silicon mirrors is on the order of 0.2” HPD, 
sufficiently small to be of concern at the present. We will revisit this issue when our technology has reached 
this level of PSF requirement. 

4. PRODUCTION 

Production starts when the technology and engineering are translated from knowledge on paper into reality, 
culminating in a mirror assembly passing all stringent performance and environmental tests and finally 
launched into space. In addition to the technological and engineering issues that have been addressed, the 
production must also address many practical issues of making and testing a mirror assembly, including 
schedule and cost which are at the heart of implementing every space flight mission. 
 
As part of our technology development, we have avoided to the largest extent using custom-designed and –
built equipment. As such, the four technical elements, i.e., mirror fabrication, costing, alignment, and 
bonding, use only commercially available off-the-shelf equipment and materials.  
 
Mono-crystalline Silicon is abundantly and inexpensively available because of the semiconductor industry. 
In all likelihood, given the importance and continued growth of the semiconductor industry, the trend of ever-
lower price of mono-crystalline silicon will continue. 
 
Capital Equipment needed for making the silicon mirrors includes CNC machines, interferometers, and ion-
beam figuring machines, all of which are available from many vendors. They can be ordered and delivered in 
a few weeks to a few months. These machines are all highly efficient and reliable.  
 
Polishing Tools are unique in that they must follow mathematical prescriptions, but they are only unique in 
their cone-angles and radii. These tools, typically made of stainless steel, can be fabricated easily and 
inexpensively by any reasonably equipped commercial machine shops. For a typical future mission, hundreds 
of unique tools may be needed. These tools can be procured commercially in less than six months. 
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Polishing Machines are simple and built out of easily available parts. The overall cost of each machine is of 
the order of a few thousand dollars. As such, hundreds of them, one for each tool, can be built quickly with 
any reasonable budget for implementing a space flight mission. 
 
The most expensive part of the production is, of course, the labor needed to perform all the tasks. Given the 
highly repetitive nature of the production process, we believe that labor can be saved as the technical process 
becomes more mature and streamlined and, therefore, more efficient. Since the making of a mirror assembly 
is just the repetition of the four technical elements for tens of thousands of times, it takes no leap of faith to 
realize that the efficiency and reliability of the four technical elements directly impact the overall production 
schedule and cost. It is our plan to mature and indeed to perfect each of the four technical elements, not only 
in making mirrors of the highest scientific performance such as PSF, but also in lowering the cost and 
minimizing the schedule. 

5. PROSPECTS 

We have outlined and reported our approach to build next generation X-ray telescopes. Our approach follows 
the traditional approach of “fabricate and assemble” where each component and each step is adequately 
measured and qualified such that the final mirror assembly is a precise sum of many precise parts. As such, 
the entire mirror assembly is free of stress to ensure its long-term stability. Perhaps most importantly this 
approach has the potential of making diffraction-limited X-ray optics in the next decade. As of 2018, we have 
demonstrated that this approach is capable of implementing a 5” telescope, likely even a 3” telescope, such as 
OGRE [25], STAR-X [26], FORCE [27], TAP [28], and HEX-P [29]. We expect this approach to make 
continued rapid progress in the coming years, culminating by the end of the 2020s in demonstration that ~0.1” 
telescopes can be built and flown, enabling missions currently on the drawing board, such as AXIS [30] and 
Lynx [31].  
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