2,885 research outputs found

    Excitations in the quantum paramagnetic phase of the quasi-one-dimensional Ising magnet CoNb2_2O6_6 in a transverse field: Geometric frustration and quantum renormalization effects

    Full text link
    The quasi-one-dimensional (1D) Ising ferromagnet CoNb2_2O6_6 has recently been driven via applied transverse magnetic fields through a continuous quantum phase transition from spontaneous magnetic order to a quantum paramagnet, and dramatic changes were observed in the spin dynamics, characteristic of weakly perturbed 1D Ising quantum criticality. We report here extensive single-crystal inelastic neutron scattering measurements of the magnetic excitations throughout the three-dimensional (3D) Brillouin zone in the quantum paramagnetic phase just above the critical field to characterize the effects of the finite interchain couplings. In this phase, we observe that excitations have a sharp, resolution-limited line shape at low energies and over most of the dispersion bandwidth, as expected for spin-flip quasiparticles. We map the full bandwidth along the strongly dispersive chain direction and resolve clear modulations of the dispersions in the plane normal to the chains, characteristic of frustrated interchain couplings in an antiferromagnetic isosceles triangular lattice. The dispersions can be well parametrized using a linear spin-wave model that includes interchain couplings and further neighbor exchanges. The observed dispersion bandwidth along the chain direction is smaller than that predicted by a linear spin-wave model using exchange values determined at zero field, and this effect is attributed to quantum renormalization of the dispersion beyond the spin-wave approximation in fields slightly above the critical field, where quantum fluctuations are still significant.Comment: 11 pages, 6 figures. Updated references. Minor changes to text and figure

    Antiferromagnetic and Orbital Ordering on a Diamond Lattice Near Quantum Criticality

    Full text link
    We present neutron scattering measurements on powder samples of the spinel FeSc2S4 that reveal a previously unobserved magnetic ordering transition occurring at 11.8(2)~K. Magnetic ordering occurs subsequent to a subtle cubic-to-tetragonal structural transition which distorts Fe coordinating sulfur tetrahedra lifting the orbital degeneracy. The application of 1~GPa hydrostatic pressure appears to destabilize this N\'eel state, reducing the transition temperature to 8.6(8)~K and redistributing magnetic spectral weight to higher energies. The relative magnitudes of ordered m2 ⁣= ⁣3.1(2)\langle m \rangle^2\!=\!3.1(2) and fluctuating moments δm2 ⁣= ⁣13(1)\langle \delta m \rangle^2\!=\!13(1) show that the magnetically ordered ground state of FeSc2S4 is drastically renormalized and in proximity to criticality.Comment: 16 pages, 12 figure

    Disorder from order among anisotropic next-nearest-neighbor Ising spin chains in SrHo2_2O4_4

    Full text link
    We describe why Ising spin chains with competing interactions in SrHo2O4\rm SrHo_2O_4 segregate into ordered and disordered ensembles at low temperatures (TT). Using elastic neutron scattering, magnetization, and specific heat measurements, the two distinct spin chains are inferred to have N\'eel (\uparrow\downarrow\uparrow\downarrow) and double-N\'eel (\uparrow\uparrow\downarrow\downarrow) ground states respectively. Below TN=0.68(2)T_\mathrm{N}=0.68(2)~K, the N\'eel chains develop three dimensional (3D) long range order (LRO), which arrests further thermal equilibration of the double-N\'eel chains so they remain in a disordered incommensurate state for TT below TS=0.52(2)T_\mathrm{S}= 0.52(2)~K. SrHo2O4\rm SrHo_2O_4 distills an important feature of incommensurate low dimensional magnetism: kinetically trapped topological defects in a quasid-d-dimensional spin system can preclude order in d+1d+1 dimensions.Comment: 10 pages, 10 figure

    Kinetic and spectroscopic studies of hemin acquisition in the hemophore HasAp from Pseudomonas aeruginosa

    Get PDF
    The extreme limitation of free iron has driven various pathogens to acquire iron from the host in the form of heme. Specifically, several Gram negative pathogens secrete a heme binding protein known as HasA to scavenge heme from the extracellular environment and to transfer it to the receptor protein HasR for import into the bacterial cell. Structures of heme-bound and apo-HasA homologues show that the heme iron(III) ligands, His32 and Tyr75, reside on loops extending from the core of the protein and that a significant conformational change must occur at the His32 loop upon heme binding. Here, we investigate the kinetics of heme acquisition by HasA from Pseudomonas aeruginosa (HasAp). The rate of heme acquisition from human met-hemoglobin (met-Hb) closely matched that of heme dissociation which suggests a passive mode of heme uptake from this source. The binding of free hemin is characterized by an initial rapid phase forming an intermediate before further conversion to the final complex. Analysis of this same reaction using an H32A variant lacking the His heme ligand shows only the rapid phase to form a heme-protein complex spectroscopically equivalent to that of the wild type intermediate. Further characterization of these reactions using EPR and resonance Raman spectroscopy of rapid freeze quench samples provided support for a model where heme is initially bound by the Tyr75 to form a high-spin heme-protein complex before slower coordination of the His32 ligand upon closing of the His loop over the heme. The slow rate of this loop closure implies that the induced-fit mechanism of heme uptake in HasAp is not based on a rapid sampling of the H32 loop between open and closed configurations, but rather, that the H32 loop motions are triggered by the formation of the high-spin heme-HasAp intermediate complex
    corecore