35 research outputs found

    Cancer risks following diagnostic and therapeutic radiation exposure in children

    Get PDF
    The growing use of interventional and fluoroscopic imaging in children represents a tremendous benefit for the diagnosis and treatment of benign conditions. Along with the increasing use and complexity of these procedures comes concern about the cancer risk associated with ionizing radiation exposure to children. Children are considerably more sensitive to the carcinogenic effects of ionizing radiation than adults, and children have a longer life expectancy in which to express risk. Numerous epidemiologic cohort studies of childhood exposure to radiation for treatment of benign diseases have demonstrated radiation-related risks of cancer of the thyroid, breast, brain and skin, as well as leukemia. Many fewer studies have evaluated cancer risk following diagnostic radiation exposure in children. Although radiation dose for a single procedure might be low, pediatric patients often receive repeated examinations over time to evaluate their conditions, which could result in relatively high cumulative doses. Several cohort studies of girls and young women subjected to multiple diagnostic radiation exposures have been informative about increased mortality from breast cancer with increasing radiation dose, and case-control studies of childhood leukemia and postnatal diagnostic radiation exposure have suggested increased risks with an increasing number of examinations. Only two long-term follow-up studies of cancer following cardiac catheterization in childhood have been conducted, and neither reported an overall increased risk of cancer. Most cancers can be induced by radiation, and a linear dose-response has been noted for most solid cancers. Risks of radiation-related cancer are greatest for those exposed early in life, and these risks appear to persist throughout life

    Is Opium a Real Risk Factor for Esophageal Cancer or Just a Methodological Artifact? Hospital and Neighborhood Controls in Case-Control Studies

    Get PDF
    Background: Control selection is a major challenge in epidemiologic case-control studies. The aim of our study was to evaluate using hospital versus neighborhood control groups in studying risk factors of esophageal squamous cell carcinoma (ESCC). Methodology/Principal Findings: We compared the results of two different case-control studies of ESCC conducted in the same region by a single research group. Case definition and enrollment were the same in the two studies, but control selection differed. In the first study, we selected two age- and sex-matched controls from inpatient subjects in hospitals, while for the second we selected two age- and sex-matched controls from each subject's neighborhood of residence. We used the test of heterogeneity to compare the results of the two studies. We found no significant differences in exposure data for tobacco-related variables such as cigarette smoking, chewing Nass (a tobacco product) and hookah (water pipe) usage, but the frequency of opium usage was significantly different between hospital and neighborhood controls. Consequently, the inference drawn for the association between ESCC and tobacco use did not differ between the studies, but it did for opium use. In the study using neighborhood controls, opium use was associated with a significantly increased risk of ESCC (adjusted OR 1.77, 95% CI 1.17–2.68), while in the study using hospital controls, this was not the case (OR 1.09, 95% CI 0.63–1.87). Comparing the prevalence of opium consumption in the two control groups and a cohort enrolled from the same geographic area suggested that the neighborhood controls were more representative of the study base population for this exposure. Conclusions/Significance: Hospital and neighborhood controls did not lead us to the same conclusion for a major hypothesized risk factor for ESCC in this population. Our results show that control group selection is critical in drawing appropriate conclusions in observational studies

    Gallstones, cholecystectomy, and the risk for developing pancreatic cancer

    Get PDF
    We examined the relation between gallstones, cholecystectomy, and the development of pancreatic cancer in the Nurses' Health Study and the Health Professionals Follow-up Study. Among 104 856 women and 48 928 men without cancer at baseline, we documented 349 cases of pancreatic cancer during up to 16 years of follow-up. Participants were classified according to a history of gallstones or cholecystectomy. The age-adjusted relative risk of pancreatic cancer following cholecystectomy or diagnosis of gallstones was 1.31 (95% CI, 0.93–1.83). However, adjustment for other pancreatic cancer risk factors attenuated the association (RR=1.11, 95% CI, 0.78–1.56); this risk did not increase with increasing time following cholecystectomy or gallstones. Gallstones or cholecystectomy do not appear to be significant risk factors for pancreatic cancer

    Mechanisms of MEOX1 and MEOX2 Regulation of the Cyclin Dependent Kinase Inhibitors p21CIP1/WAF1 and p16INK4a in Vascular Endothelial Cells

    Get PDF
    Senescence, the state of permanent cell cycle arrest, has been associated with endothelial cell dysfunction and atherosclerosis. The cyclin dependent kinase inhibitors p21CIP1/WAF1 and p16INK4a govern the G1/S cell cycle checkpoint and are essential for determining whether a cell enters into an arrested state. The homeodomain transcription factor MEOX2 is an important regulator of vascular cell proliferation and is a direct transcriptional activator of both p21CIP1/WAF1 and p16INK4a. MEOX1 and MEOX2 have been shown to be partially functionally redundant during development, suggesting that they regulate similar target genes in vivo. We compared the ability of MEOX1 and MEOX2 to activate p21CIP1/WAF1 and p16INK4a expression and induce endothelial cell cycle arrest. Our results demonstrate for the first time that MEOX1 regulates the MEOX2 target genes p21CIP1/WAF1 and p16INK4a. In addition, increased expression of either of the MEOX homeodomain transcription factors leads to cell cycle arrest and endothelial cell senescence. Furthermore, we show that the mechanism of transcriptional activation of these cyclin dependent kinase inhibitor genes by MEOX1 and MEOX2 is distinct. MEOX1 and MEOX2 activate p16INK4a in a DNA binding dependent manner, whereas they induce p21CIP1/WAF1 in a DNA binding independent manner

    Spatial Learning and Action Planning in a Prefrontal Cortical Network Model

    Get PDF
    The interplay between hippocampus and prefrontal cortex (PFC) is fundamental to spatial cognition. Complementing hippocampal place coding, prefrontal representations provide more abstract and hierarchically organized memories suitable for decision making. We model a prefrontal network mediating distributed information processing for spatial learning and action planning. Specific connectivity and synaptic adaptation principles shape the recurrent dynamics of the network arranged in cortical minicolumns. We show how the PFC columnar organization is suitable for learning sparse topological-metrical representations from redundant hippocampal inputs. The recurrent nature of the network supports multilevel spatial processing, allowing structural features of the environment to be encoded. An activation diffusion mechanism spreads the neural activity through the column population leading to trajectory planning. The model provides a functional framework for interpreting the activity of PFC neurons recorded during navigation tasks. We illustrate the link from single unit activity to behavioral responses. The results suggest plausible neural mechanisms subserving the cognitive “insight” capability originally attributed to rodents by Tolman & Honzik. Our time course analysis of neural responses shows how the interaction between hippocampus and PFC can yield the encoding of manifold information pertinent to spatial planning, including prospective coding and distance-to-goal correlates

    Dual regulatory role for phosphatase and tensin homolog in specification of intestinal endocrine cell subtypes

    No full text
    AIM: To investigate the impact of phosphatase and tensin homolog (Pten) in the specification of intestinal enteroendocrine subpopulations
    corecore