4 research outputs found

    Paternally expressed gene 3 (Pw1/Peg3) promotes sexual dimorphism in metabolism and behavior

    No full text
    International audienceThe paternally expressed gene 3 (Pw1/Peg3) is a mammalian-specific parentally imprinted gene expressed in stem/progenitor cells of the brain and endocrine tissues. Here, we compared phenotypic characteristics in Pw1/Peg3 deficient male and female mice. Our findings indicate that Pw1/Peg3 is a key player for the determination of sexual dimorphism in metabolism and behavior. Mice carrying a paternally inherited Pw1/Peg3 mutant allele manifested postnatal deficits in GH/IGF dependent growth before weaning, sex steroid dependent masculinization during puberty, and insulin dependent fat accumulation in adulthood. As a result, Pw1/Peg3 deficient mice develop a sex-dependent global shift of body metabolism towards accelerated adiposity, diabetic-like insulin resistance, and fatty liver. Furthermore, Pw1/ Peg3 deficient males displayed reduced social dominance and competitiveness concomitant with alterations in the vasopressinergic architecture in the brain. This study demonstrates that Pw1/Peg3 provides an epigenetic context that promotes male-specific characteristics through sex steroid pathways during postnatal development

    Gut microbiota changes require vagus nerve integrity to promote depressive-like behaviors in mice

    No full text
    International audienceChronic stress constitutes a major risk factor for depression that can disrupt various aspects of homeostasis, including the gut microbiome (GM). We have recently shown that GM imbalance affects adult hippocampal (HPC) neurogenesis and induces depression-like behaviors, with the exact mechanisms being under active investigation. Here we hypothesized that the vagus nerve (VN), a key bidirectional route of communication between the gut and the brain, could relay the effects of stress-induced GM changes on HPC plasticity and behavior. We used fecal samples derived from mice that sustained unpredictable chronic mild stress (UCMS) to inoculate healthy mice and assess standard behavioral readouts for anxiety- and depressive-like behavior, conduct histological and molecular analyses for adult HPC neurogenesis and evaluate neurotransmission pathways and neuroinflammation. To study the potential role of the VN in mediating the effects of GM changes on brain functions and behavior, we used mice that sustained subdiaphragmatic vagotomy (Vx) prior the GM transfer. We found that inoculation of healthy mice with GM from UCMS mice activates the VN and induces early and sustained changes in both serotonin and dopamine neurotransmission pathways in the brainstem and HPC. These changes are associated with prompt and persistent deficits in adult HPC neurogenesis and induce early and sustained neuroinflammatory responses in the HPC. Remarkably, Vx abrogates adult HPC neurogenesis deficits, neuroinflammation and depressive-like behavior, suggesting that vagal afferent pathways are necessary to drive GM-mediated effects on the brain

    Autophagy Is Required for Memory Formation and Reverses Age-Related Memory Decline

    No full text
    Age-related declines in cognitive fitness are associated with a reduction in autophagy, an intracellular lysosomal catabolic process that regulates protein homeostasis and organelle turnover. However, the functional significance of autophagy in regulating cognitive function and its decline during aging remains largely elusive. Here, we show that stimulating memory upregulates autophagy in the hippocampus. Using hippocampal injections of genetic and pharmacological modulators of autophagy, we find that inducing autophagy in hippocampal neurons is required to form novel memory by promoting activity-dependent structural and functional synaptic plasticity, including dendritic spine formation, neuronal facilitation, and long-term potentiation. We show that hippocampal autophagy activity is reduced during aging and that restoring its levels is sufficient to reverse age-related memory deficits. Moreover, we demonstrate that systemic administration of young plasma into aged mice rejuvenates memory in an autophagy-dependent manner, suggesting a prominent role for autophagy to favor the communication between systemic factors and neurons in fostering cognition. Among these youthful factors, we identify osteocalcin, a bone-derived molecule, as a direct hormonal inducer of hippocampal autophagy. Our results reveal that inducing autophagy in hippocampal neurons is a necessary mechanism to enhance the integration of novel stimulations of memory and to promote the influence of systemic factors on cognitive fitness. We also demonstrate the potential therapeutic benefits of modulating autophagy in the aged brain to counteract age-related cognitive impairments
    corecore