3,463 research outputs found

    Solute concentration at a well in non-Gaussian aquifers under constant and time-varying pumping schedule

    Get PDF
    Our study is keyed to the analysis of the interplay between engineering factors (i.e., transient pumping rates versus less realistic but commonly analyzed uniform extraction rates) and the heterogeneous structure of the aquifer (as expressed by the probability distribution characterizing transmissivity) on contaminant transport. We explore the joint influence of diverse (a) groundwater pumping schedules (constant and variable in time) and (b) representations of the stochastic heterogeneous transmissivity (T) field on temporal histories of solute concentrations observed at an extraction well. The stochastic nature of T is rendered by modeling its natural logarithm, Y = ln T, through a typical Gaussian representation and the recently introduced Generalized sub-Gaussian (GSG) model. The latter has the unique property to embed scale-dependent non-Gaussian features of the main statistics of Y and its (spatial) increments, which have been documented in a variety of studies. We rely on numerical Monte Carlo simulations and compute the temporal evolution at the well of low order moments of the solute concentration (C), as well as statistics of the peak concentration (Cp), identified as the environmental performance metric of interest in this study. We show that the pumping schedule strongly affects the pattern of the temporal evolution of the first two statistical moments of C, regardless the nature (Gaussian or non-Gaussian) of the underlying Y field, whereas the latter quantitatively influences their magnitude. Our results show that uncertainty associated with C and Cpestimates is larger when operating under a transient extraction scheme than under the action of a uniform withdrawal schedule. The probability density function (PDF) of Cpdisplays a long positive tail in the presence of time-varying pumping schedule. All these aspects are magnified in the presence of non-Gaussian Y fields. Additionally, the PDF of Cpdisplays a bimodal shape for all types of pumping schemes analyzed, independent of the type of heterogeneity considered

    Who is more likely to feel ostracized? A latent class analysis of personality traits

    Get PDF
    Perceived ostracism (e.g., feeling ignored or excluded) is a painful and distressing experience. However, little empirical research has investigated the types (profiles) of people more likely to perceive ostracism. The present study (N = 395) used latent class analysis to (a) identify potential classes based on the big five personality traits (i.e., openness, agreeableness, negative emotionality, extroversion, and conscientiousness) and (b) examine whether such classes could reliably differentiate levels of self-reported perceived ostracism. We extracted three classes: (a) Moderate Traits (MT), (b) the Quiet Over-Reacting Procrastinators (QORP), and (c) the Active and Adaptable Thinkers (AAT). Those in the QORP class reported the highest levels of perceived ostracism, whereas those in the AAT class reported the lowest levels of perceived ostracism compared to the MT class. This study provides new insight into the profiles of individuals who may be more likely to perceive ostracism. However, further research is needed to explore the association between personality and ostracism (e.g., as ostracism may lead to changes in personality), so that potential risk markers to trigger early psychological interventions of such ostracized individuals can be identified

    Conformal invariance and its breaking in a stochastic model of a fluctuating interface

    Full text link
    Using Monte-Carlo simulations on large lattices, we study the effects of changing the parameter uu (the ratio of the adsorption and desorption rates) of the raise and peel model. This is a nonlocal stochastic model of a fluctuating interface. We show that for 0<u<10<u<1 the system is massive, for u=1u=1 it is massless and conformal invariant. For u>1u>1 the conformal invariance is broken. The system is in a scale invariant but not conformal invariant phase. As far as we know it is the first example of a system which shows such a behavior. Moreover in the broken phase, the critical exponents vary continuously with the parameter uu. This stays true also for the critical exponent Ď„\tau which characterizes the probability distribution function of avalanches (the critical exponent DD staying unchanged).Comment: 22 pages and 20 figure

    Finite-size left-passage probability in percolation

    Full text link
    We obtain an exact finite-size expression for the probability that a percolation hull will touch the boundary, on a strip of finite width. Our calculation is based on the q-deformed Knizhnik--Zamolodchikov approach, and the results are expressed in terms of symplectic characters. In the large size limit, we recover the scaling behaviour predicted by Schramm's left-passage formula. We also derive a general relation between the left-passage probability in the Fortuin--Kasteleyn cluster model and the magnetisation profile in the open XXZ chain with diagonal, complex boundary terms.Comment: 21 pages, 8 figure

    The two electron artificial molecule

    Full text link
    Exact results for the classical and quantum system of two vertically coupled two-dimensional single electron quantum dots are obtained as a function of the interatomic distance (d) and with perpendicular magnetic field. The classical system exhibits a second order structural transition as a function of d which is smeared out and shifted to lower d values in the quantum case. The spin-singlet - spin-triplet oscillations are shifted to larger magnetic fields with increasing d and are quenched for a sufficiently large interatomic distance.Comment: 4 pages, 4 ps figure

    A phase II study of high dose epirubicin in unresectable non small cell lung cancer.

    Get PDF
    Epirubicin (EPI), a doxorubicin analogue, is reported to have equal antitumour activity with lower cardiac and systemic toxicity. Recently, the maximum tolerated dose of this drug has been revised upwards with reported increased response rates in several malignancies. We initiated a phase II study of high-dose EPI as initial treatment for patients with advanced non-small cell lung cancer (NSCLC) (stage III and IV). Between May 1988 and November 1989, 25 patients were entered. The starting dose of EPI was 135 mg m-2, with dose attenuations and escalations of 15 mg m-2 based on mid-cycle evaluation of toxicity. Treatment was repeated every 3 weeks. Nine partial responses (36%, 95% CI: 18-57.5%) and 11 patients with disease stabilisation (44%) were observed. Median (range) time to progression was 19 (3-70) weeks. Median (range) survival is 32 (9-116+) weeks. There were no treatment related deaths. Major side effects were leukocytopenia WHO grade III/IV (23% of courses) and mucositis WHO grade II/III (15% of courses). In two patients left ventricular ejection fraction decreased greater than 15% compared to baseline values after a cumulative Epirubicin dose of 435 mg m-2, and therefore went off study. In none of the patients clinical signs of congestive heart failure were observed. We conclude from our data that high-dose EPI, contrary to previous negative studies using lower doses of EPI, ranks amongst the most active regimens against advanced NSCLC. Toxicity of high-dose EPI is moderate. Further evaluation of this compound in combination regimens is recommended

    Predicting blunt cerebrovascular injury in pediatric trauma: Validation of the Utah Score

    Get PDF
    Risk factors for blunt cerebrovascular injury (BCVI) may differ between children and adults, suggesting that children at low risk for BCVI after trauma receive unnecessary computed tomography angiography (CTA) and high-dose radiation. We previously developed a score for predicting pediatric BCVI based on retrospective cohort analysis. Our objective is to externally validate this prediction score with a retrospective multi-institutional cohort. We included patients who underwent CTA for traumatic cranial injury at four pediatric Level I trauma centers. Each patient in the validation cohort was scored using the “Utah Score” and classified as high or low risk. Before analysis, we defined a misclassification rate <25% as validating the Utah Score. Six hundred forty-five patients (mean age 8.6 ± 5.4 years; 63.4% males) underwent screening for BCVI via CTA. The validation cohort was 411 patients from three sites compared with the training cohort of 234 patients. Twenty-two BCVIs (5.4%) were identified in the validation cohort. The Utah Score was significantly associated with BCVIs in the validation cohort (odds ratio 8.1 [3.3, 19.8], p < 0.001) and discriminated well in the validation cohort (area under the curve 72%). When the Utah Score was applied to the validation cohort, the sensitivity was 59%, specificity was 85%, positive predictive value was 18%, and negative predictive value was 97%. The Utah Score misclassified 16.6% of patients in the validation cohort. The Utah Score for predicting BCVI in pediatric trauma patients was validated with a low misclassification rate using a large, independent, multicenter cohort. Its implementation in the clinical setting may reduce the use of CTA in low-risk patients

    Evaluating the performance of five different chemical ionization techniques for detecting gaseous oxygenated organic species

    Get PDF
    The impact of aerosols on climate and air quality remains poorly understood due to multiple factors. One of the current limitations is the incomplete understanding of the contribution of oxygenated products, generated from the gas-phase oxidation of volatile organic compounds (VOCs), to aerosol formation. Indeed, atmospheric gaseous chemical processes yield thousands of (highly) oxygenated species, spanning a wide range of chemical formulas, functional groups and, consequently, volatilities. While recent mass spectrometric developments have allowed extensive on-line detection of a myriad of oxygenated organic species, playing a central role in atmospheric chemistry, the detailed quantification and characterization of this diverse group of compounds remains extremely challenging. To address this challenge, we evaluated the capability of current state-of-the-art mass spectrometers equipped with different chemical ionization sources to detect the oxidation products formed from alpha-Pinene ozonolysis under various conditions. Five different mass spectrometers were deployed simultaneously for a chamber study. Two chemical ionization atmospheric pressure interface time-of-flight mass spectrometers (CI-APi-TOF) with nitrate and amine reagent ion chemistries and an iodide chemical ionization time-of-flight mass spectrometer (TOF-CIMS) were used. Additionally, a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF 8000) and a new "vocus" PTR-TOF were also deployed. In the current study, we compared around 1000 different compounds between each of the five instruments, with the aim of determining which oxygenated VOCs (OVOCs) the different methods were sensitive to and identifying regions where two or more instruments were able to detect species with similar molecular formulae. We utilized a large variability in conditions (including different VOCs, ozone, NOx and OH scavenger concentrations) in our newly constructed atmospheric simulation chamber for a comprehensive correlation analysis between all instruments. This analysis, combined with estimated concentrations for identified molecules in each instrument, yielded both expected and surprising results. As anticipated based on earlier studies, the PTR instruments were the only ones able to measure the precursor VOC, the iodide TOF-CIMS efficiently detected many semi-volatile organic compounds (SVOCs) with three to five oxygen atoms, and the nitrate CI-APi-TOF was mainly sensitive to highly oxygenated organic (O > 5) molecules (HOMs). In addition, the vocus showed good agreement with the iodide TOF-CIMS for the SVOC, including a range of organonitrates. The amine CI-APi-TOF agreed well with the nitrate CI-APi-TOF for HOM dimers. However, the loadings in our experiments caused the amine reagent ion to be considerably depleted, causing nonlinear responses for monomers. This study explores and highlights both benefits and limitations of currently available chemical ionization mass spectrometry instrumentation for characterizing the wide variety of OVOCs in the atmosphere. While specifically shown for the case of alpha-Pinene ozonolysis, we expect our general findings to also be valid for a wide range of other VOC-oxidant systems. As discussed in this study, no single instrument configuration can be deemed better or worse than the others, as the optimal instrument for a particular study ultimately depends on the specific target of the study.Peer reviewe

    Conformal symmetry in non-local field theories

    Full text link
    We have shown that a particular class of non-local free field theory has conformal symmetry in arbitrary dimensions. Using the local field theory counterpart of this class, we have found the Noether currents and Ward identities of the translation, rotation and scale symmetries. The operator product expansion of the energy-momentum tensor with quasi-primary fields is also investigated.Comment: 15 pages, V2 (Some references added) V3(published version
    • …
    corecore