562 research outputs found

    Probing the Upper Limit of Nonclassical Rotational Inertia

    Full text link
    We study the effect of confinement on solid 4-He's nonclassical rotational inertia (NCRI) in a torsional oscillator by constraining it to narrow annular cells of various widths. The NCRI exhibits a broad maximum value of 20% for annuli of approximately 100 micrometer width. Samples constrained to porous media or to larger geometries both have smaller NCRI, mostly below about 1%. In addition, we extend Kim and Chan's blocked annulus experiment to solid samples with large supersolid fractions. Blocking the annulus suppresses the nonclassical decoupling from 17.1% below the limit of our detection of 0.8%. This result demonstrates the nonlocal nature of the supersolid phenomena. At 20 mK, NCRI depends on velocity history showing a closed hysteresis loop in different thin annular cells.Comment: 5 pages, 4 figure

    Absence of Pressure-Driven Supersolid Flow at Low Frequency

    Full text link
    An important unresolved question in supersolid research is the degree to which the non-classical rotational inertia (NCRI) phenomenon observed in the torsional oscillator experiments of Kim and Chan, is evidence for a Bose-condensed supersolid state with superfluid-like properties. In an open annular geometry, Kim and Chan found that a fraction of the solid moment of inertia is decoupled from the motion of the oscillator; however, when the annulus is blocked by a partition, the decoupled supersolid fraction is locked to the oscillator being accelerated by an AC pressure gradient generated by the moving partition. These observations are in accord with superfluid hydrodynamics. We apply a low frequency AC pressure gradient in order to search for a superfluid-like response in a supersolid sample. Our results are consistent with zero supersolid flow in response to the imposed low frequency pressure gradient. A statistical analysis of our data sets a bound, at the 68% confidence level, of 9.6×104\times 10^{-4} nm/s for the mass transport velocity carried by a possible supersolid flow. In terms of a simple model for the supersolid, an upper bound of 3.3×106\times 10^{-6} is set for the supersolid fraction at 25 mK, at this same confidence level. These findings force the conclusion that the NCRI observed in the torsional oscillator experiments is not evidence for a frequency independent superfluid-like state. Supersolid behavior is a frequency-dependent phenomenon, clearly evident in the frequency range of the torsional oscillator experiments, but undetectably small at frequencies approaching zero.Comment: 6 pages, 5 figure

    Possible role of 3He impurities in solid 4He

    Full text link
    We use a quantum lattice gas model to describe essential aspects of the motion of 4He atoms and of 3He impurities in solid 4He. This study suggests that 3He impurities bind to defects and promote 4He atoms to interstitial sites which can turn the bosonic quantum disordered crystal into a metastable supersolid. It is suggested that defects and interstitial atoms are produced during the solid 4He nucleation process where the role of 3He impurities (in addition to the cooling rate) is known to be important even at very small (1 ppm) impurity concentration. It is also proposed that such defects can form a glass phase during the 4He solid growth by rapid cooling.Comment: 4 two-column Revtex pages, 4 figures. Europhysics Letters (in Press

    Metastability in Spin-Polarized Fermi Gases

    Full text link
    We study the role of particle transport and evaporation on the phase separation of an ultracold, spin-polarized atomic Fermi gas. We show that the previously observed deformation of the superfluid paired core is a result of evaporative depolarization of the superfluid due to a combination of enhanced evaporation at the center of the trap and the inhibition of spin transport at the normal-superfluid phase boundary. These factors contribute to a nonequilibrium jump in the chemical potentials at the phase boundary. Once formed, the deformed state is highly metastable, persisting for times of up to 2 s.Comment: 4 pages, 6 figure

    Web-based Platform For Collaborative Medical Imaging Research

    Get PDF
    Medical imaging research depends basically on the availability of large image collections, image processing and analysis algorithms, hardware and a multidisciplinary research team. It has to be reproducible, free of errors, fast, accessible through a large variety of devices spread around research centers and conducted simultaneously by a multidisciplinary team. Therefore, we propose a collaborative research environment, named Adessowiki, where tools and datasets are integrated and readily available in the Internet through a web browser. Moreover, processing history and all intermediate results are stored and displayed in automatic generated web pages for each object in the research project or clinical study. It requires no installation or configuration from the client side and offers centralized tools and specialized hardware resources, since processing takes place in the cloud.941

    Thermal History of Solid 4He Under Oscillation

    Full text link
    We have studied the thermal history of the resonant frequency of a torsional oscillator containing solid 4He. We find that the magnitude of the frequency shift that occurs below 100 mK is multivalued in the low temperature limit, with the exact value depending on how the state is prepared. This result can be qualitatively explained in terms of the motion and pinning of quantized vortices within the sample. Several aspects of the data are also consistent with the response of dislocation lines to oscillating stress fields imposed on the solid.Comment: 7 pages, 6 figure

    Conformational analysis of 2,2-difluoroethylamine hydrochloride: double gauche effect

    Get PDF
    The gauche effect in fluorinated alkylammonium salts is well known and attributed either to an intramolecular hydrogen bond or to an electrostatic attraction between the positively charged nitrogen and the vicinal electronegative fluorine atom. This work reports the effect of adding a fluorine atom in 2-fluoroethylamine hydrochloride on the conformational isomerism of the resulting 2,2-difluoroethylamine chloride (2). The analysis was carried out using NMR coupling constants in D2O solution, in order to mimic the equilibrium conditions in a physiological medium, in the gas phase and in implicit water through theoretical calculations. Despite the presence of sigma(CH)->sigma(*)(CF) and sigma(CH)->sigma(*)(CN) interactions, which usually rule the hyperconjugative gauche effect in 1,2-disubstituted ethanes, the most important forces leading to the double gauche effect (+NH3 in the gauche relationship with both fluorine atoms) in 2 are the Lewis-type ones. Particularly, electrostatic interactions are operative even in water solution, where they should be significantly attenuated, whereas hyperconjugation and hydrogen bond have secondary importance10877882CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE MINAS GERAIS - FAPEMIGFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPsem informaçãosem informação2012/03933-5; 2011/11098-6; 2011/01170-
    corecore