23 research outputs found

    Biosynthesis of mycobacterial arabinogalactan: identification of a novel (13)arabinofuranosyltransferase

    Get PDF
    The cell wall mycolyl-arabinogalactan-peptidoglycan complex is essential in mycobacterial species, such as Mycobacterium tuberculosis and is the target of several anti-tubercular drugs. For instance, ethambutol targets arabinogalactan biosynthesis through inhibition of the arabinofuranosyltransferases Mt-EmbA and Mt-EmbB. A bioinformatics approach identified putative integral membrane proteins, MSMEG2785 in Mycobacterium smegmatis, Rv2673 in Mycobacterium tuberculosis and NCgl1822 in Corynebacterium glutamicum, with 10 predicted transmembrane domains and a glycosyltransferase motif (DDX), features that are common to the GT-C superfamily of glycosyltransferases. Deletion of M. smegmatis MSMEG2785 resulted in altered growth and glycosyl linkage analysis revealed the absence of AG (13)-linked arabinofuranosyl (Araf) residues. Complementation of the M. smegmatis deletion mutant was fully restored to a wild type phenotype by MSMEG2785 and Rv2673, and as a result, we have now termed this previously uncharacterized open reading frame, arabinofuranosyltransferase C (aftC). Enzyme assays using the sugar donor -D-arabinofuranosyl-1-monophosphoryldecaprenol (DPA) and a newly synthesized linear (15)-linked Ara5 neoglycolipid acceptor together with chemical identification of products formed, clearly identified AftC as a branching (13) arabinofuranosyltransferase. This newly discovered glycosyltransferase sheds further light on the complexities of Mycobacterium cell wall biosynthesis, such as in M. tuberculosis and related species and represents a potential new drug target

    Identification of an α(1→6) mannopyranosyltransferase (MptA), involved in Corynebacterium glutamicum lipomanann biosynthesis, and identification of its orthologue in Mycobacterium tuberculosis

    Get PDF
    Corynebacterium glutamicum and Mycobacterium tuberculosis share a similar cell wall architecture, and the availability of their genome sequences has enabled the utilization of C. glutamicum as a model for the identification and study of, otherwise essential, mycobacterial genes involved in lipomannan (LM) and lipoarabinomannan (LAM) biosynthesis. We selected the putative glycosyltransferase-Rv2174 from M. tuberculosis and deleted its orthologue NCgl2093 from C. glutamicum. This resulted in the formation of a novel truncated lipomannan (Cg-t-LM) and a complete ablation of LM/LAM biosynthesis. Purification and characterization of Cg-t-LM revealed an overall decrease in molecular mass, a reduction of α(1→6) and α(1→2) glycosidic linkages illustrating a reduced degree of branching compared with wild-type LM. The deletion mutant's biochemical phenotype was fully complemented by either NCgl2093 or Rv2174. Furthermore, the use of a synthetic neoglycolipid acceptor in an in vitro cell-free assay utilizing the sugar donor β-d-mannopyranosyl-1-monophosphoryl-decaprenol together with the neoglycolipid acceptor α-d-Manp-(1→6)-α-d-Manp-O-C8 as a substrate, confirmed NCgl2093 and Rv2174 as an α(1→6) mannopyranosyltransferase (MptA), involved in the latter stages of the biosynthesis of the α(1→6) mannan core of LM. Altogether, these studies have identified a new mannosyltransferase, MptA, and they shed further light on the biosynthesis of LM/LAM in Corynebacterianeae

    Engineering of a Glycerol Utilization Pathway for Amino Acid Production by Corynebacterium glutamicumâ–ż

    No full text
    The amino acid-producing organism Corynebacterium glutamicum cannot utilize glycerol, a stoichiometric by-product of biodiesel production. By heterologous expression of Escherichia coli glycerol utilization genes, C. glutamicum was engineered to grow on glycerol. While expression of the E. coli genes for glycerol kinase (glpK) and glycerol 3-phosphate dehydrogenase (glpD) was sufficient for growth on glycerol as the sole carbon and energy source, additional expression of the aquaglyceroporin gene glpF from E. coli increased growth rate and biomass formation. Glutamate production from glycerol was enabled by plasmid-borne expression of E. coli glpF, glpK, and glpD in C. glutamicum wild type. In addition, a lysine-producing C. glutamicum strain expressing E. coli glpF, glpK, and glpD was able to produce lysine from glycerol as the sole carbon substrate as well as from glycerol-glucose mixtures

    Method for the Fermentative Production of L-Amino Acids With the Aid of Coryneform Bacteria Capable of Using Glycerin as the Only Carbon Source

    No full text
    Wendisch VF, Rittmann D, Sahm H, Kreutzer C. Method for the Fermentative Production of L-Amino Acids With the Aid of Coryneform Bacteria Capable of Using Glycerin as the Only Carbon Source. 27.11.2008

    Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum

    No full text
    Meiswinkel T, Rittmann D, Lindner S, Wendisch VF. Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum. Bioresource Technology. 2013;145:254-258

    Procede pour produire des acides l-amines par fermentation au moyen de bacteries coryneformes

    No full text
    Wendisch VF, Rittmann D, Sahm H, Kreutzer C. Procede pour produire des acides l-amines par fermentation au moyen de bacteries coryneformes. 02.08.2007
    corecore