11,779 research outputs found

    Strength, Width, and Pressure Shift Measurements of 54 Lines in the Oxygen A-Band

    Get PDF
    The absorption band of molecular oxygen, centered at 760]en1] nm, is the atmospheric absorber for the Differential Absorption Lidar (DIAL) systems used to measure atmospheric temperature, pressure, and density. To provide accurate line parameters for such systems, a careful spectroscopic study was made of the A-band, with measurements of line strengths, widths, pressure-induced frequency shifts, and collisional narrowing effects. The width and shift parameters were measured over a temperature range of -20 to 100 C so that the temperature dependence of these parameters can also be determined. To analyze the results, a least-squares fiting routine was written to fit standard line profiles to the observed profiles. These measurements, which include the first observations of pressure shifts and collisional narrowing in the band, are an important contribution to lidar system utilizing the A-band

    Weight estimation techniques for composite airplanes in general aviation industry

    Get PDF
    Currently available weight estimation methods for general aviation airplanes were investigated. New equations with explicit material properties were developed for the weight estimation of aircraft components such as wing, fuselage and empennage. Regression analysis was applied to the basic equations for a data base of twelve airplanes to determine the coefficients. The resulting equations can be used to predict the component weights of either metallic or composite airplanes

    Investigation of topographical stability of the concave and convex Self-Organizing Map variant

    Get PDF
    We investigate, by a systematic numerical study, the parameter dependence of the stability of the Kohonen Self-Organizing Map and the Zheng and Greenleaf concave and convex learning with respect to different input distributions, input and output dimensions

    Formation of InAs Self-Assembled Quantum Rings on InP

    Full text link
    Shape transformations of partially capped self-assembled InAs quantum dots grown on InP are studied. Atomic force microscopy images show large anisotropic redistribution of the island material after coverage by a 1 nm thick InP layer. The anisotropic material redistribution occurs within a few minutes and leads to a change from lens-like to elongated ring-like islands. The shape transformation is not accompanied by dot material compositional change. The formation of InAs/InP quantum rings disagrees with a previous model of InAs/GaAs ring formation that assumes that the driving force for the dot to ring transformation is the difference in surface diffusion velocity of indium and gallium atoms.Comment: 13 pages, including 2 figures and 1 table. Submitted to Appl. Phys. Let

    Asymptotic Level Density of the Elastic Net Self-Organizing Feature Map

    Full text link
    Whileas the Kohonen Self Organizing Map shows an asymptotic level density following a power law with a magnification exponent 2/3, it would be desired to have an exponent 1 in order to provide optimal mapping in the sense of information theory. In this paper, we study analytically and numerically the magnification behaviour of the Elastic Net algorithm as a model for self-organizing feature maps. In contrast to the Kohonen map the Elastic Net shows no power law, but for onedimensional maps nevertheless the density follows an universal magnification law, i.e. depends on the local stimulus density only and is independent on position and decouples from the stimulus density at other positions.Comment: 8 pages, 10 figures. Link to publisher under http://link.springer.de/link/service/series/0558/bibs/2415/24150939.ht

    Doping-induced quantum cross-over in Er2_2Ti2x_{2-x}Snx_xO7_7

    Full text link
    We present the results of the investigation of magnetic properties of the Er2_2Ti2x_{2-x}Snx_xO7_7 series. For small doping values the ordering temperature decreases linearly with xx while the moment configuration remains the same as in the x=0x = 0 parent compound. Around x=1.7x = 1.7 doping level we observe a change in the behavior, where the ordering temperature starts to increase and new magnetic Bragg peaks appear. For the first time we present evidence of a long-range order (LRO) in Er2_2Sn2_2O7_7 (x=2.0x = 2.0) below TN=130T_N = 130 mK. It is revealed that the moment configuration corresponds to a Palmer-Chalker type with a value of the magnetic moment significantly renormalized compared to x=0x = 0. We discuss our results in the framework of a possible quantum phase transition occurring close to x=1.7x = 1.7.Comment: accepted in PRB Rapi

    The Core Composition of a White Dwarf in a Close Double Degenerate System

    Full text link
    We report the identification of the double degenerate system NLTT 16249 that comprises a normal, hydrogen-rich (DA) white dwarf and a peculiar, carbon-polluted white dwarf (DQ) showing photospheric traces of nitrogen. We disentangled the observed spectra and constrained the properties of both stellar components. In the evolutionary scenario commonly applied to the sequence of DQ white dwarfs, both carbon and nitrogen would be dredged up from the core. The C/N abundance ratio (~ 50) in the atmosphere of this unique DQ white dwarf suggests the presence of unprocessed material (14N) in the core or in the envelope. Helium burning in the DQ progenitor may have terminated early on the red-giant branch after a mass-ejection event leaving unprocessed material in the core although current mass estimates do not favor the presence of a low-mass helium core. Alternatively, some nitrogen in the envelope may have survived an abridged helium-core burning phase prior to climbing the asymptotic giant-branch. Based on available data, we estimate a relatively short orbital period (P <~ 13 hrs) and on-going spectroscopic observations will help determine precise orbital parameters.Comment: Accepted for publication in ApJ Letter
    corecore