498 research outputs found

    Monitoring nanoparticle dissolution via fluorescence-colour shift

    Get PDF
    [La(OH)]2+[ICG]−2 and [La(OH)]2+2[PTC]4− inorganic–organic hybrid nanoparticles (IOH-NPs) with indocyanine green (ICG) and perylene-3,4,9,10-tetracarboxylate (PTC) as fluorescent dye anions are used for emission-based monitoring of the dissolution of nanoparticles. Whereas ICG shows a deep red emission in the solid [La(OH)]2+[ICG]−2 IOH-NPs, the emission of PTC in the solid [La(OH)]2+2[PTC]4− IOH-NPs is completely quenched due to π-stacking. After nanoparticle dissolution, the emission of freely dissolved ICG is weak, whereas freely dissolved PTC shows intense green emission. We report on the synthesis of IOH-NPs and nanoparticle characterization as well as on the fluorescence properties and how to avoid undesirable energy transfer between different fluorescent dyes. The emission shift from red (intact solid nanoparticles) to green (freely dissolved dye anions), indicating nanoparticle dissolution, is shown for aqueous systems and verified in vitro. Based on this first proof-of-the-concept, the IOH-NP marker system can be interesting to monitor nanoparticle dissolution in cells and tissues of small animals and to evaluate cell processes and/or drug-delivery strategies

    First lattice evidence for a non-trivial renormalization of the Higgs condensate

    Get PDF
    General arguments related to ``triviality'' predict that, in the broken phase of (λΦ4)4(\lambda\Phi^4)_4 theory, the condensate re-scales by a factor $Z_{\phi}$ different from the conventional wavefunction-renormalization factor, $Z_{prop}$. Using a lattice simulation in the Ising limit we measure $Z_{\phi}=m^2 \chi$ from the physical mass and susceptibility and $Z_{prop}$ from the residue of the shifted-field propagator. We find that the two $Z$'s differ, with the difference increasing rapidly as the continuum limit is approached. Since $Z_{\phi}$ affects the relation of to the Fermi constant it can sizeably affect the present bounds on the Higgs mass.Comment: 10 pages, 3 figures, 1 table, Latex2

    Plausible Shading Decomposition For Layered Photo Retouching

    Get PDF
    Photographers routinely compose multiple manipulated photos of the same scene (layers) into a single image, which is better than any individual photo could be alone. Similarly, 3D artists set up rendering systems to produce layered images to contain only individual aspects of the light transport, which are composed into the final result in post-production. Regrettably, both approaches either take considerable time to capture, or remain limited to synthetic scenes. In this paper, we suggest a system to allow decomposing a single image into a plausible shading decomposition (PSD) that approximates effects such as shadow, diffuse illumination, albedo, and specular shading. This decomposition can then be manipulated in any off-the-shelf image manipulation software and recomposited back. We perform such a decomposition by learning a convolutional neural network trained using synthetic data. We demonstrate the effectiveness of our decomposition on synthetic (i.e., rendered) and real data (i.e., photographs), and use them for common photo manipulation, which are nearly impossible to perform otherwise from single images

    Learning on the Edge: Investigating Boundary Filters in CNNs

    Get PDF
    Convolutional neural networks (CNNs) handle the case where filters extend beyond the image boundary using several heuristics, such as zero, repeat or mean padding. These schemes are applied in an ad-hoc fashion and, being weakly related to the image content and oblivious of the target task, result in low output quality at the boundary. In this paper, we propose a simple and effective improvement that learns the boundary handling itself. At training-time, the network is provided with a separate set of explicit boundary filters. At testing-time, we use these filters which have learned to extrapolate features at the boundary in an optimal way for the specific task. Our extensive evaluation, over a wide range of architectural changes (variations of layers, feature channels, or both), shows how the explicit filters result in improved boundary handling. Furthermore, we investigate the efficacy of variations of such boundary filters with respect to convergence speed and accuracy. Finally, we demonstrate an improvement of 5–20% across the board of typical CNN applications (colorization, de-Bayering, optical flow, disparity estimation, and super-resolution). Supplementary material and code can be downloaded from the project page: http://geometry.cs.ucl.ac.uk/projects/2019/investigating-edge/

    Microscopic Non-Universality versus Macroscopic Universality in Algorithms for Critical Dynamics

    Full text link
    We study relaxation processes in spin systems near criticality after a quench from a high-temperature initial state. Special attention is paid to the stage where universal behavior, with increasing order parameter emerges from an early non-universal period. We compare various algorithms, lattice types, and updating schemes and find in each case the same universal behavior at macroscopic times, despite of surprising differences during the early non-universal stages.Comment: 9 pages, 3 figures, RevTeX, submitted to Phys. Rev. Let

    Blue Noise Plots

    Get PDF
    We propose Blue Noise Plots, two-dimensional dot plots that depict data points of univariate data sets. While often one-dimensional strip plots are used to depict such data, one of their main problems is visual clutter which results from overlap. To reduce this overlap, jitter plots were introduced, whereby an additional, non-encoding plot dimension is introduced, along which the data point representing dots are randomly perturbed. Unfortunately, this randomness can suggest non-existent clusters, and often leads to visually unappealing plots, in which overlap might still occur. To overcome these shortcomings, we introduce BlueNoise Plots where random jitter along the non-encoding plot dimension is replaced by optimizing all dots to keep a minimum distance in 2D i. e., Blue Noise. We evaluate the effectiveness as well as the aesthetics of Blue Noise Plots through both, a quantitative and a qualitative user study

    Determinação de polifenóis como subsídio para seleção de variedades do Banco Ativo de Germoplasma de Uva.

    Get PDF
    A proposta do presente trabalho é analisar os teores de polifenóis bioativos em variedades do Banco Ativo de Germoplasma (acessos) e/ou novas variedades em fase de criação (seleções), através da técnica de Cromatografia Líquida de Alta Eficiência (HPLC)

    Temperature-driven reorganization of electronic order in CsV3_3Sb5_5

    Full text link
    We report a temperature dependent x-ray diffraction study of the electronic ordering instabilities in the kagome material CsV3_3Sb5_5. Our measurements between 10 K and 120 K reveal an unexpected reorganization of the three-dimensional electronic order in the bulk of CsV3_3Sb5_5: At 10 K, a 2x2x2 superstructure modulation due to electronic order is observed, which upon warming changes to a 2x2x4 superstructure at 60 K. The electronic order-order transition discovered here involves a change in the stacking of electronically ordered V3_3Sb5_5-layers and agrees perfectly with anomalies previously observed in magneto-transport measurements. This implies that the temperature dependent three-dimensional electronic order plays a decisive role for transport properties, which are related to the Berry-curvature of the V-bands. Our data also show that the bulk electronic order in CsV3_3Sb5_5 breaks the 6-fold rotational symmetry of the underlying P6/mmmP6/mmm lattice structure.Comment: 5 pages, 3 figure

    Analyzing Operating and Support Costs for Air Force Aircraft

    Get PDF
    Purpose: Recent legislation resulted in an elevation of operating and support (O&S) costs’ relative importance for decision-making in Department of Defense programs. However, a lack of research in O&S hinders a cost analyst’s abilities to provide accurate sustainment estimates. Thus, the purpose of this paper is to investigate when Air Force aircraft O&S costs stabilize and to what degree. Next, a parametric O&S model is developed to predict median O&S costs for use as a new tool for cost analyst practitioners.Design/Methodology/Approach: Utilizing the Air Force total ownership cost database, 44 programs consisting of 765 observations from 1996 to 2016 are analyzed. First, stability is examined in three areas: total O&S costs, the six O&S cost element structures and by aircraft type. Next, stepwise regression is used to predict median O&S costs per total active inventory (CPTAI) and identify influential variables.Findings: Stability results vary by category but generally are found to occur approximately five years from initial operating capability. The regression model explains 89.01 per cent of the variance in the data set when predicting median O&S CPTAI. Aircraft type, location of lead logistics center and unit cost are the three largest contributing factors

    X-Ray Scattering at FeCo(001) Surfaces and the Crossover between Ordinary and Normal Transitions

    Full text link
    In a recent experiment by Krimmel et al. [PRL 78, 3880 (1997)], the critical behavior of FeCo near a (001) surface was studied by x-ray scattering. Here the experimental data are reanalyzed, taking into account recent theoretical results on order-parameter profiles in the crossover regime between ordinary and normal transitions. Excellent agreement between theoretical expectations and the experimental results is found.Comment: 9 pages, Latex, 1 PostScript figure, to be published in Phys.Rev.
    • …
    corecore