142 research outputs found

    Kinesin-II is required for axonal transport of choline acetyltransferase in Drosophila

    Get PDF
    KLP64D and KLP68D are members of the kinesin-II family of proteins in Drosophila. Immunostaining for KLP68D and ribonucleic acid in situ hybridization for KLP64D demonstrated their preferential expression in cholinergic neurons. KLP68D was also found to accumulate in cholinergic neurons in axonal obstructions caused by the loss of kinesin light chain. Mutations in the KLP64D gene cause uncoordinated sluggish movement and death, and reduce transport of choline acetyltransferase from cell bodies to the synapse. The inviability of KLP64D mutations can be rescued by expression of mammalian KIF3A. Together, these data suggest that kinesin-II is required for the axonal transport of a soluble enzyme, choline acetyltransferase. in a specific subset of neurons in Drosophila. Furthermore, the data lead to the conclusion that the cargo transport requirements of different classes of neurons may lead to upregulation of specific pathways of axonal transport

    Is pulsar B0656+14 a very nearby RRAT source?

    Get PDF
    The recently discovered RRAT sources are characterized by very bright radio bursts which, while being periodically related, occur infrequently. We find bursts with the same characteristics for the known pulsar B0656+14. These bursts represent pulses from the bright end of an extended smooth pulse-energy distribution and are shown to be unlike giant pulses, giant micropulses or the pulses of normal pulsars. The extreme peak-fluxes of the brightest of these pulses indicates that PSR B0656+14, were it not so near, could only have been discovered as an RRAT source. Longer observations of the RRATs may reveal that they, like PSR B0656+14, emit weaker emission in addition to the bursts.Comment: 4 pages, 4 figures, accepted by ApJ

    Automatic Speaker Recognition System in Adverse Conditions — Implication of Noise and Reverberation on System Performance

    Get PDF
    Speaker recognition has been developed and evolved over the past few decades into a supposedly mature technique. Existing methods typically utilize robust features extracted from clean speech. In real-world applications, especially security and forensics related ones, reliability of recognition becomes crucial, meanwhile limited speech samples and adverse acoustic conditions, most notably noise and reverberation, impose further complications. This paper is presented from a study into the behavior of typical speaker recognition systems in adverse retrieval phases. Following a brief review, a speaker recognition system was implemented using the MSR Identity Toolbox by Microsoft. Validation tests were carried out with clean speech and the speech contaminated by noise and/or reverberation of varying degrees. The image source method was adopted to take into account real acoustic conditions in the spaces. Statistical relationships between recognition accuracy and signal to noise ratios or reverberation times have therefore been established. Results show noise and reverberation can, to different extents, degrade the performance of recognition. Both reverberation time and direct to reverberation ratio can affect recognition accuracy. The findings may be used to estimate the accuracy of speaker recognition and further determine the likelihood a particular speaker

    A study of strong pulses detected from PSR B0656+14 using Urumqi 25-m radio telescope at 1540MHz

    Full text link
    We report on the properties of strong pulses from PSR B0656+14 by analyzing the data obtained using Urumqi 25-m radio telescope at 1540 MHz from August 2007 to September 2010. In 44 hrs of observational data, a total of 67 pulses with signal-to-noise ratios above a 5-{\sigma} threshold were detected. The peak flux densities of these pulses are 58 to 194 times that of the average profile, and the pulse energies of them are 3 to 68 times that of the average pulse. These pulses are clustered around phases about 5 degrees ahead of the peak of the average profile. Comparing with the width of the average profile, they are relatively narrow, with the full widths at half-maximum range from 0.28 to 1.78 degrees. The distribution of pulse-energies of the pulses follows a lognormal distribution. These sporadic strong pulses detected from PSR B0656+14 are different in character from the typical giant pulses, and from its regular pulses.Comment: 6 pages, 3 figures, Accepted by RA

    Investigation of the unique nulling properties of PSR B0818-41

    Full text link
    We report on the unique nulling properties of PSR B0818-41, using the GMRT at 325 and 610 MHz. We find following interesting behaviour just before and after the nulls: (i) The pulsar's intensity does not switch off abruptly at the null, but fades gradually, taking ~ 10 P1. Just after nulls intensity rises to a maximum over a short (less than one period) time scale. (ii) While the last active pulses before nulls are dimmer, the first few active pulses just after nulls outshine normal ones. This effect is very clear for inner region of pulsar profile, where mean intensity of last few active pulses just after nulls is ~ 2.8 times more than that for last active pulses just before nulls. (iii) There is a significant evolution of shape of the pulsar's profile, around nulls, especially at beginning of bursts: an enhanced bump of intensity in inner region, a change in ratio of strengths of the leading and trailing peaks towards a more symmetric profile, an increase in profile width of about 10%, and a shift of profile centre towards later longitudes. (iv) Just before nulls, the apparent drift rate becomes slower, transitioning to an almost phase stationary drift pattern. Further, when the pulsar comes out of null, the increased intensity is very often accompanied by what looks like a disturbed drift rate behaviour, which settles down to the regular drift pattern as the pulsar intensity returns to normal. Thus, we find some very specific and well correlated changes in the radio emission properties of PSR B0818-41 when the emission restarts after a null. These could imply that the phenomenon of nulling is associated with some kind of a "reset" of the pulsar radio emission engine. We also present plausible explanations for some of the observed behaviour, using the Partially Screened Gap model of the inner pulsar accelerator.Comment: 15 pages, 14 figures, and 4 tables; Trimmed abstract; Full abstract can be found in PS/PDF version; Accepted for publication in MNRA

    Arecibo Timing and Single Pulse Observations of 18 Pulsars

    Full text link
    We present new results of timing and single pulse measurements for 18 radio pulsars discovered in 1993 - 1997 by the Penn State/NRL declination-strip survey conducted with the 305-m Arecibo telescope at 430 MHz. Long-term timing measurements have led to significant improvements of the rotational and the astrometric parameters of these sources, including the millisecond pulsar, PSR J1709+2313, and the pulsar located within the supernova remnant S147, PSR J0538+2817. Single pulse studies of the brightest objects in the sample have revealed an unusual "bursting" pulsar, PSR J1752+2359, two new drifting subpulse pulsars, PSR J1649+2533 and PSR J2155+2813, and another example of a pulsar with profile mode changes, PSR J1746+2540. PSR J1752+2359 is characterized by bursts of emission, which appear once every 3-5 min. and decay exponentially on a ~45 sec timescale. PSR J1649+2533 spends ~30% of the time in a null state with no detectable radio emission.Comment: submitted to Ap

    Statistical properties of giant pulses from the Crab pulsar

    Full text link
    We have studied the statistics of giant pulses from the Crab pulsar for the first time with particular reference to their widths. We have analyzed data collected during 3.5 hours of observations conducted with the Westerbork Synthesis Radio Telescope operated in a tied-array mode at a frequency of 1200 MHz. The PuMa pulsar backend provided voltage recording of X and Y linear polarization states in two conjugate 10 MHz bands. We restricted the time resolution to 4 microseconds to match the scattering on the interstellar inhomogeneities. In total about 18000 giant pulses (GP) were detected in full intensity with a threshold level of 6 sigma. Cumulative probability distributions (CPD) of giant pulse energies were analyzed for groups of GPs with different effective widths in the range 4 to 65 microseconds. The CPDs were found to manifest notable differences for the different GP width groups. The slope of a power-law fit to the high-energy portion of the CPDs evolves from -1.7 to -3.2 when going from the shortest to the longest GPs. There are breaks in the CPD power-law fits indicating flattening at low energies with indices varying from -1.0 to -1.9 for the short and long GPs respectively. The GPs with a stronger peak flux density were found to be of shorter duration. We compare our results with previously published data and discuss the importance of these peculiarities in the statistical properties of GPs for the heoretical understanding of the emission mechanism responsible for GP generation.Comment: 5 pages, 2 figures. Accepted by Astronomy and Astrophysic
    • …
    corecore