17,795 research outputs found
Precursor ion scanning for detection and structural characterization of heterogeneous glycopeptide mixtures
AbstractThe structure of N-linked glycans is determined by a complex, anabolic, intracellular pathway but the exact role of individual glycans is not always clear. Characterization of carbohydrates attached to glycoproteins is essential to aid understanding of this complex area of biology. Specific mass spectral detection of glycopeptides from protein digests may be achieved by on-line HPLC-MS, with selected ion monitoring (SIM) for diagnostic product ions generated by cone voltage fragmentation, or by precursor ion scanning for terminal saccharide product ions, which can yield the same information more rapidly. When glycosylation is heterogeneous, however, these approaches can result in spectra that are complex and poorly resolved. We have developed methodology, based around precursor ion scanning for ions of high m/z, that allows site specific detection and structural characterization of glycans at high sensitivity and resolution. These methods have been developed using the standard glycoprotein, fetuin, and subsequently applied to the analysis of the N-linked glycans attached to the scrapie-associated prion protein, PrPSc. These glycans are highly heterogeneous and over 30 structures have been identified and characterized site specifically. Product ion spectra have been obtained on many glycopeptides confirming structure assignments. The glycans are highly fucosylated and carry Lewis X or sialyl Lewis X epitopes and the structures are in-line with previous results. [Abbreviations: Hex–Hexose, C6H12O6 carbohydrates, including mannnose and galactose; HexNAc—N-acetylhexosamine, C8H15NO6 carbohydrates, including N-acetylglucosamine and N-acetylgalactosamine; GlcNAc—N-acetylglucosamine; GalNAc—N-acetylgalactosamine; Fuc–Fucose; NeuAC—N-acetylneuraminic acid or sialic acid; TSE—Transmissible Spongiform Encephalopathy.
Anomalous spin-dependent behaviour of one-dimensional subbands
We report a new electron interaction effect in GaAs/AlGaAs quantum wires.
Using DC-bias spectroscopy, we show that large and abrupt changes occur to the
energies of spin-down (lower energy) states as they populate. The effect is not
observed for spin-up energy states. At B=0, interactions have a pronounced
effect, in the form of the well-known 0.7 Structure. However, our new results
show that interactions strongly affect the energy spectrum at all magnetic
fields, from 0 to 16T, not just in the vicinity of the 0.7 Structure.Comment: 4 pages, 2 figure
Free induction decay of a superposition stored in a quantum dot
We study the free evolution of a superposition initialized with high fidelity
in the neutral-exciton state of a quantum dot. Readout of the state at later
times is achieved by polarized photon detection, averaged over a large number
of cycles. By controlling the fine-structure splitting (FSS) of the dot with a
dc electric field, we show a reduction in the degree of polarization of the
signal when the splitting is minimized. In analogy with the "free induction
decay" observed in nuclear magnetic resonance, we attribute this to hyperfine
interactions with nuclei in the semiconductor. We numerically model this effect
and find good agreement with experimental studies. Our findings have
implications for storage of superpositions in solid-state systems and for
entangled photon pair emission protocols that require a small value of the FSS
Movie of the interplanetary magnetic field
Description of movie representing IMP-1 MAGNETOMETER observations of interplanetary magnetic fiel
Interplanetary magnetic field IMP-1, motion picture of the transverse components
Motion picture report of IMP-1 magnetometer observations of interplanetary magnetic fiel
Spin-dependent transport in a quasiballistic quantum wire
We describe the transport properties of a 5 m long one-dimensional (1D)
quantum wire. Reduction of conductance plateaux due to the introduction of
weakly disorder scattering are observed. In an in-plane magnetic field, we
observe spin-splitting of the reduced conductance steps. Our experimental
results provide evidence that deviation from conductance quantisation is very
small for electrons with spin parallel and is about 1/3 for electrons with spin
anti-parallel. Moreover, in a high in-plane magnetic field, a spin-polarised 1D
channel shows a plateau-like structure close to which
strengthens with {\em increasing} temperatures. It is suggested that these
results arise from the combination of disorder and the electron-electron
interactions in the 1D electron gas.Comment: 4 pages, 5 figures, latex to be published in Phys. Rev. B (15/3/2000
- …