118 research outputs found

    Associations between SNPs in candidate immune-relevant genes and rubella antibody levels: a multigenic assessment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mechanisms of immune response are structured within a highly complex regulatory system. Genetic associations with variation in the immune response to rubella vaccine have typically been assessed one locus at a time. We simultaneously assessed the associations between 726 SNPs tagging 84 candidate immune response genes and rubella-specific antibody levels. Blood samples were obtained from 714 school-aged children who had received two doses of MMR vaccine. Associations between rubella-specific antibody levels and 726 candidate tagSNPs were assessed both one SNP at a time and in a variety of multigenic analyses.</p> <p>Results</p> <p>Single-SNP assessments identified 4 SNPs that appeared to be univariately associated with rubella antibody levels: rs2844482 (p = 0.0002) and rs2857708 (p = 0.001) in the 5'UTR of the LTA gene, rs7801617 in the 5'UTR of the IL6 gene (p = 0.0005), and rs4787947 in the 5'UTR of the IL4R gene (p = 0.002). While there was not significant evidence in favor of epistatic genetic associations among the candidate SNPs, multigenic analyses identified 29 SNPs significantly associated with rubella antibody levels when selected as a group (p = 0.017). This collection of SNPs included not only those that were significant univariately, but others that would not have been identified if only considered in isolation from the other SNPs.</p> <p>Conclusions</p> <p>For the first time, multigenic assessment of associations between candidate SNPs and rubella antibody levels identified a broad number of genetic associations that would not have been deemed important univariately. It is important to consider approaches like those applied here in order to better understand the full genetic complexity of response to vaccination.</p

    Single pi+ Electroproduction on the Proton in the First and Second Resonance Regions at 0.25GeV^2 < Q^2 < 0.65GeV^2 Using CLAS

    Full text link
    The ep -> e'pi^+n reaction was studied in the first and second nucleon resonance regions in the 0.25 GeV^2 < Q^2 < 0.65 GeV^2 range using the CLAS detector at Thomas Jefferson National Accelerator Facility. For the first time the absolute cross sections were measured covering nearly the full angular range in the hadronic center-of-mass frame. The structure functions sigma_TL, sigma_TT and the linear combination sigma_T+epsilon*sigma_L were extracted by fitting the phi-dependence of the measured cross sections, and were compared to the MAID and Sato-Lee models.Comment: Accepted for publication in PR

    ATHENA: A knowledge-based hybrid backpropagation-grammatical evolution neural network algorithm for discovering epistasis among quantitative trait Loci

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Growing interest and burgeoning technology for discovering genetic mechanisms that influence disease processes have ushered in a flood of genetic association studies over the last decade, yet little heritability in highly studied complex traits has been explained by genetic variation. Non-additive gene-gene interactions, which are not often explored, are thought to be one source of this "missing" heritability.</p> <p>Methods</p> <p>Stochastic methods employing evolutionary algorithms have demonstrated promise in being able to detect and model gene-gene and gene-environment interactions that influence human traits. Here we demonstrate modifications to a neural network algorithm in ATHENA (the Analysis Tool for Heritable and Environmental Network Associations) resulting in clear performance improvements for discovering gene-gene interactions that influence human traits. We employed an alternative tree-based crossover, backpropagation for locally fitting neural network weights, and incorporation of domain knowledge obtainable from publicly accessible biological databases for initializing the search for gene-gene interactions. We tested these modifications <it>in silico </it>using simulated datasets.</p> <p>Results</p> <p>We show that the alternative tree-based crossover modification resulted in a modest increase in the sensitivity of the ATHENA algorithm for discovering gene-gene interactions. The performance increase was highly statistically significant when backpropagation was used to locally fit NN weights. We also demonstrate that using domain knowledge to initialize the search for gene-gene interactions results in a large performance increase, especially when the search space is larger than the search coverage.</p> <p>Conclusions</p> <p>We show that a hybrid optimization procedure, alternative crossover strategies, and incorporation of domain knowledge from publicly available biological databases can result in marked increases in sensitivity and performance of the ATHENA algorithm for detecting and modelling gene-gene interactions that influence a complex human trait.</p

    Differential Glucose-Regulation of MicroRNAs in Pancreatic Islets of Non-Obese Type 2 Diabetes Model Goto-Kakizaki Rat

    Get PDF
    The Goto-Kakizaki (GK) rat is a well-studied non-obese spontaneous type 2 diabetes (T2D) animal model characterized by impaired glucose-stimulated insulin secretion (GSIS) in the pancreatic beta cells. MicroRNAs (miRNAs) are short regulatory RNAs involved in many fundamental biological processes. We aim to identify miRNAs that are differentially-expressed in the pancreatic islets of the GK rats and investigate both their short- and long term glucose-dependence during glucose-stimulatory conditions

    Mechanisms of Hybrid Oligomer Formation in the Pathogenesis of Combined Alzheimer's and Parkinson's Diseases

    Get PDF
    Background: Misfolding and pathological aggregation of neuronal proteins has been proposed to play a critical role in the pathogenesis of neurodegenerative disorders. Alzheimer’s disease (AD) and Parkinson’s disease (PD) are frequent neurodegenerative diseases of the aging population. While progressive accumulation of amyloid b protein (Ab) oligomers has been identified as one of the central toxic events in AD, accumulation of a-synuclein (a-syn) resulting in the formation of oligomers and protofibrils has been linked to PD and Lewy body Disease (LBD). We have recently shown that Ab promotes a-syn aggregation and toxic conversion in vivo, suggesting that abnormal interactions between misfolded proteins might contribute to disease pathogenesis. However the molecular characteristics and consequences of these interactions are not completely clear. Methodology/Principal Findings: In order to understand the molecular mechanisms involved in potential Ab/a-syn interactions, immunoblot, molecular modeling, and in vitro studies with a-syn and Ab were performed. We showed in vivo in the brains of patients with AD/PD and in transgenic mice, Ab and a-synuclein co-immunoprecipitate and form complexes. Molecular modeling and simulations showed that Ab binds a-syn monomers, homodimers, and trimers, forming hybrid ringlike pentamers. Interactions occurred between the N-terminus of Ab and the N-terminus and C-terminus of a-syn. Interacting a-syn and Ab dimers that dock on the membrane incorporated additional a-syn molecules, leading to th

    SNP-SNP interactions in breast cancer susceptibility

    Get PDF
    BACKGROUND: Breast cancer predisposition genes identified to date (e.g., BRCA1 and BRCA2) are responsible for less than 5% of all breast cancer cases. Many studies have shown that the cancer risks associated with individual commonly occurring single nucleotide polymorphisms (SNPs) are incremental. However, polygenic models suggest that multiple commonly occurring low to modestly penetrant SNPs of cancer related genes might have a greater effect on a disease when considered in combination. METHODS: In an attempt to identify the breast cancer risk conferred by SNP interactions, we have studied 19 SNPs from genes involved in major cancer related pathways. All SNPs were genotyped by TaqMan 5'nuclease assay. The association between the case-control status and each individual SNP, measured by the odds ratio and its corresponding 95% confidence interval, was estimated using unconditional logistic regression models. At the second stage, two-way interactions were investigated using multivariate logistic models. The robustness of the interactions, which were observed among SNPs with stronger functional evidence, was assessed using a bootstrap approach, and correction for multiple testing based on the false discovery rate (FDR) principle. RESULTS: None of these SNPs contributed to breast cancer risk individually. However, we have demonstrated evidence for gene-gene (SNP-SNP) interaction among these SNPs, which were associated with increased breast cancer risk. Our study suggests cross talk between the SNPs of the DNA repair and immune system (XPD-[Lys751Gln] and IL10-[G(-1082)A]), cell cycle and estrogen metabolism (CCND1-[Pro241Pro] and COMT-[Met108/158Val]), cell cycle and DNA repair (BARD1-[Pro24Ser] and XPD-[Lys751Gln]), and within carcinogen metabolism (GSTP1-[Ile105Val] and COMT-[Met108/158Val]) pathways. CONCLUSION: The importance of these pathways and their communication in breast cancer predisposition has been emphasized previously, but their biological interactions through SNPs have not been described. The strategy used here has the potential to identify complex biological links among breast cancer genes and processes. This will provide novel biological information, which will ultimately improve breast cancer risk management

    Measurement of the Polarized Structure Function σLT\sigma_{LT^\prime} for Pion Electroproduction in the Roper Resonance Region

    Full text link
    The polarized longitudinal-transverse structure function σLT\sigma_{LT^\prime} measures the interference between real and imaginary amplitudes in pion electroproduction and can be used to probe the coupling between resonant and non-resonant processes. We report new measurements of σLT\sigma_{LT^\prime} in the N(1440)1/2+N(1440){1/2}^+ (Roper) resonance region at Q2=0.40Q^2=0.40 and 0.65 GeV2^2 for both the π0p\pi^0 p and π+n\pi^+ n channels. The experiment was performed at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS) using longitudinally polarized electrons at a beam energy of 1.515 GeV. Complete angular distributions were obtained and are compared to recent phenomenological models. The σLT(π+n)\sigma_{LT^\prime}(\pi^+ n) channel shows a large sensitivity to the Roper resonance multipoles M1M_{1-} and S1S_{1-} and provides new constraints on models of resonance formation.Comment: 5 pages, 3 figures. Revised manuscript accepted by Physical Review C (Brief Report

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    A scoping review and thematic analysis of social and behavioural research among HIV-serodiscordant couples in high-income settings.

    Get PDF
    CAPRISA, 2015.Abstract available in pdf
    corecore