12,094 research outputs found

    Experimental analysis of multistatic multiband radar signatures of wind turbines

    Get PDF
    This study presents the analysis of recent experimental data acquired using two radar systems at S-band and X-band to measure simultaneous monostatic and bistatic signatures of operational wind turbines near Shrivenham, UK. Bistatic and multistatic radars are a potential approach to mitigate the adverse effects of wind farm clutter on the performance of radar systems, which is a well-known problem for air traffic control and air defence radar. This analysis compares the simultaneous monostatic and bistatic micro-Doppler signatures of two operational turbines and investigates the key differences at bistatic angles up to 23°. The variations of the signature with different polarisations, namely vertical transmitted and vertical received and horizontal transmitted and horizontal received, are also discussed

    Impacts of boundary layer turbulence and land surface process parameterizations on simulated sea breeze characteristics

    Get PDF
    This paper investigates the sensitivity of sea breeze (SB) simulations to combinations of boundary-layer turbulence and land-surface process parameterizations implemented in the MM5 mesoscale meteorological mode for an observed SB case over the Swedish west coast. Various combinations from four different planetary boundary layer (PBL) schemes [Blackadar, Gayno-Seaman (GS), Eta, MRF], and two land surface model (LSM) schemes (SLAB, Noah) with different complexity are designed to simulate a typical SB case over the Swedish west coast. The simulations are conducted using two-way interactively nested grids. Simulated 10-m winds are compared against observed near-surface wind data from the GÖTE2001 campaign to examine the diurnal cycle of wind direction and speed for SB timing. The SB (vertical) circulation is also compared in the different experiments. The results show that the different combinations of PBL and LSM parameterization schemes result in different SB timing and vertical circulation characteristics. All experiments predict a delayed SB. The vertical component of the SB circulation varies in the experiments, among which the GS PBL scheme produces the strongest SB circulation. Evident differences between the SLAB and Noah LSMs are also found, especially in maximum of updraft and downdraft velocities of the SB vertical circulation. The results have significant implications for convective initiation, air quality studies and other environmental problems in coastal areas

    Possible evidence of a spontaneous spin-polarization in mesoscopic 2D electron systems

    Full text link
    We have experimentally studied the non-equilibrium transport in low-density clean 2D electron systems at mesoscopic length scales. At zero magnetic field (B), a double-peak structure in the non-linear conductance was observed close to the Fermi energy in the localized regime. From the behavior of these peaks at non-zero B, we could associate them to the opposite spin states of the system, indicating a spontaneous spin polarization at B = 0. Detailed temperature and disorder dependence of the structure shows that such a splitting is a ground state property of the low-density 2D systems.Comment: 7 pages, 5 figure

    Distinguishing impurity concentrations in GaAs and AlGaAs, using very shallow undoped heterostructures

    Full text link
    We demonstrate a method of making a very shallow, gateable, undoped 2-dimensional electron gas. We have developed a method of making very low resistivity contacts to these structures and systematically studied the evolution of the mobility as a function of the depth of the 2DEG (from 300nm to 30nm). We demonstrate a way of extracting quantitative information about the background impurity concentration in GaAs and AlGaAs, the interface roughness and the charge in the surface states from the data. This information is very useful from the perspective of molecular beam epitaxy (MBE) growth. It is difficult to fabricate such shallow high-mobility 2DEGs using modulation doping due to the need to have a large enough spacer layer to reduce scattering and switching noise from remote ionsied dopants.Comment: 4 pages, 5 eps figure

    Shot Noise in Mesoscopic Transport Through Localised States

    Get PDF
    We show that shot noise can be used for studies of hopping and resonant tunnelling between localised electron states. In hopping via several states, shot noise is seen to be suppressed compared with its classical Poisson value SI=2eIS_I=2eI (II is the average current) and the suppression depends on the distribution of the barriers between the localised states. In resonant tunnelling through a single impurity an enhancement of shot noise is observed. It has been established, both theoretically and experimentally, that a considerable increase of noise occurs due to Coulomb interaction between two resonant tunnelling channels.Comment: 7 pages, 5 figures; Proceedings of the 10th Conference on Hopping and Related Phenomena (Trieste 2003); requires Wiley style files (included

    Surface-acoustic-wave driven planar light-emitting device

    Full text link
    Electroluminescence emission controlled by means of surface acoustic waves (SAWs) in planar light-emitting diodes (pLEDs) is demonstrated. Interdigital transducers for SAW generation were integrated onto pLEDs fabricated following the scheme which we have recently developed. Current-voltage, light-voltage and photoluminescence characteristics are presented at cryogenic temperatures. We argue that this scheme represents a valuable building block for advanced optoelectronic architectures
    • …
    corecore