489 research outputs found

    Quantum Disordered Ground States in Frustrated Antiferromagnets with Multiple Ring Exchange Interactions

    Get PDF
    We present a certain class of two-dimensional frustrated quantum Heisenberg spin systems with multiple ring exchange interactions which are rigorously demonstrated to have quantum disordered ground states without magnetic long-range order. The systems considered in this paper are s=1/2 antiferromagnets on a honeycomb and square lattices, and an s=1 antiferromagnet on a triangular lattice. We find that for a particular set of parameter values, the ground state is a short-range resonating valence bond state or a valence bond crystal state. It is shown that these systems are closely related to the quantum dimer model introduced by Rokhsar and Kivelson as an effective low-energy theory for valence bond states.Comment: 6 pages, 4 figure

    Monte Carlo Calculation of the Spin-Stiffness of the Two-Dimensional Heisenberg Model

    Full text link
    Using a collective-mode Monte Carlo method (the Wolff-Swendsen-Wang algorithm), we compute the spin-stiffness of the two-dimensional classical Heisenberg model. We show that it is the relevant physical quantity to investigate the behaviour of the model in the very low temperature range inaccessible to previous studies based on correlation length and susceptibility calculations.Comment: 6 pages, latex, 3 postscript figures appended, DIM preprint 93-3

    Temperature-Dependent X-Ray Absorption Spectroscopy of Colossal Magnetoresistive Perovskites

    Full text link
    The temperature dependence of the O K-edge pre-edge structure in the x-ray absorption spectra of the perovskites La(1-x)A(x)MnO(3), (A = Ca, Sr; x = 0.3, 0.4) reveals a correlation between the disappearance of the splitting in the pre-edge region and the presence of Jahn-Teller distortions. The different magnitudes of the distortions for different compounds is proposed to explain some dissimilarity in the line shape of the spectra taken above the Curie temperature.Comment: To appear in Phys. Rev. B, 5 pages, 3 figure

    XY checkerboard antiferromagnet in external field

    Full text link
    Ordering by thermal fluctuations is studied for the classical XY antiferromagnet on a checkerboard lattice in zero and finite magnetic fields by means of analytical and Monte Carlo methods. The model exhibits a variety of novel broken symmetries including states with nematic ordering in zero field and with triatic order parameter at high fields.Comment: 6 page

    Physical Conditions in Shocked Interstellar Gas Interacting with the Supernova Remnant IC 443

    Full text link
    We present the results of a detailed investigation into the physical conditions in interstellar material interacting with the supernova remnant IC 443. Our analysis is based on a comprehensive examination of high-resolution far-ultraviolet spectra obtained with the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope of two stars behind IC 443. One of our targets (HD 43582) probes gas along the entire line of sight through the supernova remnant, while the other (HD 254755) samples material located ahead of the primary supernova shock front. We identify low velocity quiescent gas in both directions and find that the densities and temperatures in these components are typical of diffuse atomic and molecular clouds. Numerous high velocity components are observed in the absorption profiles of neutral and singly-ionized atomic species toward HD 43582. These components exhibit a combination of greatly enhanced thermal pressures and significantly reduced dust-grain depletions. We interpret this material as cooling gas in a recombination zone far downstream from shocks driven into neutral gas clumps. The pressures derived for a group of ionized gas components at high positive velocity toward HD 43582 are lower than those of the other shocked components, pointing to pressure inhomogeneities across the remnant. A strong very high velocity component near -620 km/s is seen in the absorption profiles of highly-ionized species toward HD 43582. The velocity of this material is consistent with the range of shock velocities implied by observations of soft thermal X-ray emission from IC 443. Moderately high-velocity gas toward HD 254755 may represent shocked material from a separate foreground supernova remnant.Comment: 88 pages, 27 figures, accepted for publication in Ap

    Classical heisenberg antiferromagnet away from the pyrochlore lattice limit: entropic versus energetic selection

    Full text link
    The stability of the disordered ground state of the classical Heisenberg pyrochlore antiferromagnet is studied within extensive Monte Carlo simulations by introducing an additional exchange interaction JJ' that interpolates between the pyrochlore lattice (J=0J'=0) and the face-centered cubic lattice (J=JJ'=J). It is found that for J/JJ'/J as low as J/J0.01J'/J\ge 0.01, the system is long range ordered : the disordered ground state of the pyrochlore antiferromagnet is unstable when introducing very small deviations from the pure J=0J'=0 limit. Furthermore, it is found that the selected phase is a collinear state energetically greater than the incommensurate phase suggested by a mean field analysis. To our knowledge this is the first example where entropic selection prevails over the energetic one.Comment: 5 (two-column revtex4) pages, 1 table, 7 ps/eps figures. Submitted to Phys. Rev.

    Vortex ordering in fully-frustrated superconducting systems with dice lattice

    Full text link
    The structure and the degenracy of the ground state of a fully-frustrated XY-model are investigated for the case of a dice lattice geometry. The results are applicable for the description of Josephson junction arrays and thin superconducting wire networks in the external magnetic field providing half-integer number of flux quanta per plaquette. The mechanisms of disordering of vortex pattern in such systems are briefly discussed.Comment: 10 pages, 3 figure

    Superconducting Phase with Fractional Vortices in the Frustrated Kagome Wire Network at f=1/2

    Full text link
    In classical XY kagome antiferromagnets, there can be a novel low temperature phase where ψ3=ei3θ\psi^3=e^{i3\theta} has quasi-long-range order but ψ\psi is disordered, as well as more conventional antiferromagnetic phases where ψ\psi is ordered in various possible patterns (θ\theta is the angle of orientation of the spin). To investigate when these phases exist in a physical system, we study superconducting kagome wire networks in a transverse magnetic field when the magnetic flux through an elementary triangle is a half of a flux quantum. Within Ginzburg-Landau theory, we calculate the helicity moduli of each phase to estimate the Kosterlitz-Thouless (KT) transition temperatures. Then at the KT temperatures, we estimate the barriers to move vortices and effects that lift the large degeneracy in the possible ψ\psi patterns. The effects we have considered are inductive couplings, non-zero wire width, and the order-by-disorder effect due to thermal fluctuations. The first two effects prefer q=0q=0 patterns while the last one selects a 3×3\sqrt{3}\times\sqrt{3} pattern of supercurrents. Using the parameters of recent experiments, we conclude that at the KT temperature, the non-zero wire width effect dominates, which stabilizes a conventional superconducting phase with a q=0q=0 current pattern. However, by adjusting the experimental parameters, for example by bending the wires a little, it appears that the novel ψ3\psi^3 superconducting phase can instead be stabilized. The barriers to vortex motion are low enough that the system can equilibrate into this phase.Comment: 30 pages including figure

    Landau levels in the case of two degenerate coupled bands: kagome lattice tight-binding spectrum

    Full text link
    The spectrum of charged particles hopping on a kagome lattice in a uniform transverse magnetic field shows an unusual set of Landau levels at low field. They are unusual in two respects: the lowest Landau levels are paramagnetic so their energies decrease linearly with increasing field magnitude, and the spacings between the levels are not equal. These features are shown to follow from the degeneracy of the energy bands in zero magnetic field. We give a general discussion of Landau levels in the case of two degenerate bands, and show how the kagome lattice tight-binding model includes one special case of this more general problem. We also discuss the consequences of this for the behavior of the critical temperature of a kagome grid superconducting wire network, which is the experimental system that originally motivated this work.Comment: 18 pages, 8 figure

    Long range Neel order in the triangular Heisenberg model

    Full text link
    We have studied the Heisenberg model on the triangular lattice using several Quantum Monte Carlo (QMC) techniques (up to 144 sites), and exact diagonalization (ED) (up to 36 sites). By studying the spin gap as a function of the system size we have obtained a robust evidence for a gapless spectrum, confirming the existence of long range Neel order. Our best estimate is that in the thermodynamic limit the order parameter m= 0.41 +/- 0.02 is reduced by about 59% from its classical value and the ground state energy per site is e0=-0.5458 +/- 0.0001 in unit of the exchange coupling. We have identified the important ground state correlations at short distance.Comment: 4 pages, RevTeX + 4 encapsulated postscript figure
    corecore