7 research outputs found
LIBS applicability for investigation of re-deposition and fuel retention in tungsten coatings exposed to pure and nitrogen-mixed deuterium plasmas of Magnum-PSI
We have investigated the applicability of Laser Induced Breakdown Spectroscopy (LIBS) for analyzing the changes in the composition and fuel retention of W and W-Ta coatings following exposure to D2 or mixed D2-N2 plasma beams in the linear plasma device Magnum PSI. The exposed samples were characterized by in situ ns-LIBS and complementary analysis methods Secondary Ion Mass Spectroscopy, Energy Dispersive x-ray spectroscopy and Nuclear Reaction Analysis. In agreement with the used complementary analysis methods, LIBS revealed the formation of up to 400 nm thick co-deposited surface layer in the central region of the coatings which contained a higher concentration of the main plasma impurities, such as N, and metals, such as Ta and Mo, the latter originating mainly from the substrate and from the plasma source. The deuterium retention on the other hand was highest outside from the central region of the coatings.</p
LIBS applicability for investigation of re-deposition and fuel retention in tungsten coatings exposed to pure and nitrogen-mixed deuterium plasmas of Magnum-PSI
We have investigated the applicability of Laser Induced Breakdown Spectroscopy (LIBS) for analyzing the changes in the composition and fuel retention of W and W-Ta coatings following exposure to D2 or mixed D2-N2 plasma beams in the linear plasma device Magnum PSI. The exposed samples were characterized by in situ ns-LIBS and complementary analysis methods Secondary Ion Mass Spectroscopy, Energy Dispersive x-ray spectroscopy and Nuclear Reaction Analysis. In agreement with the used complementary analysis methods, LIBS revealed the formation of up to 400 nm thick co-deposited surface layer in the central region of the coatings which contained a higher concentration of the main plasma impurities, such as N, and metals, such as Ta and Mo, the latter originating mainly from the substrate and from the plasma source. The deuterium retention on the other hand was highest outside from the central region of the coatings
LIBS depth profiling of Be-containing samples with different gaseous impurity concentrations
Understanding the interaction between the fusion plasma and the plasma-facing materials (PFMs) is crucial for achieving the optimal performance, safety, and lifetime of the fusion devices. Relevant materials have been intensely studied to determine fuel retention and the composition of the co-deposited layers on the PFMs by depth profile analysis using Laser-Induced Breakdown Spectroscopy (LIBS) and Calibration-Free (CF)-LIBS. However, the comparison between the layers containing a mixture of different (seeding) gases using LIBS, has not been studied systematically. Consequently, the aim of this work is the LIBS depth profile analysis of Be-based samples containing the fuel (D) and one of the seeding gases (N, Ne, He) with variable concentrations to study the potential impact on fuel retention in the PFMs. The LIBS measurements were performed using Nd:YAG laser (1064 nm) under Ar atmosphere (at 2 and 100 mbar). In LIBS the ablation rate was evaluated, spectral lines of all relevant elements except N and Ne were detected and compared with the SIMS depth profiles. The reasons for the non-detectability of Ne are discussed in detail.</p