254 research outputs found
Multiple components of PKA and TGF-beta pathways are mutated in pseudomyxoma peritonei
Pseudomyxoma peritonei (PMP) is a subtype of mucinous adenocarcinoma mainly restricted to the peritoneal cavity and most commonly originating from the appendix. The genetic background of PMP is poorly understood and no targeted treatments are currently available for this fatal disease. While RAS signaling pathway is affected in most if not all PMP cases and over half of them also have a mutation in the GNAS gene, other genetic alterations and affected pathways are, to a large degree, poorly known. In this study, we sequenced whole coding genome of nine PMP tumors and paired normal tissues in order to identify additional, commonly mutated genes and signaling pathways affected in PMP. These exome sequencing results were validated with an ultra-deep amplicon sequencing method, leading to 14 validated variants. The validated results contain seven genes that contribute to the protein kinase A (PKA) pathway. PKA pathway, which also contains GNAS, is a major player of overproduction of mucin, which is the characteristic feature of PMP. In addition to PKA pathway, we identified mutations in six genes that belong to the transforming growth factor beta (TGF-beta) pathway, which is a key regulator of cell proliferation. Since either GNAS mutation or an alternative mutation in the PKA pathway was identified in 8/9 patients, inhibition of the PKA pathway might reduce mucin production in most of the PMP patients and potentially suppress disease progression.Peer reviewe
High frequency of TTK mutations in microsatellite-unstable colorectal cancer and evaluation of their effect on spindle assembly checkpoint
Frameshift mutations frequently accumulate in microsatellite-unstable colorectal cancers (MSI CRCs) typically leading to downregulation of the target genes due to nonsense-mediated messenger RNA decay. However, frameshift mutations that occur in the 3' end of the coding regions can escape decay, which has largely been ignored in previous works. In this study, we characterized nonsense-mediated decay-escaping frameshift mutations in MSI CRC in an unbiased, genome wide manner. Combining bioinformatic search with expression profiling, we identified genes that were predicted to escape decay after a deletion in a microsatellite repeat. These repeats, located in 258 genes, were initially sequenced in 30 MSI CRC samples. The mitotic checkpoint kinase TTK was found to harbor decay-escaping heterozygous mutations in exon 22 in 59% (105/179) of MSI CRCs, which is notably more than previously reported. Additional novel deletions were found in exon 5, raising the mutation frequency to 66%. The exon 22 of TTK contains an A(9)-G(4)-A(7) locus, in which the most common mutation was a mononucleotide deletion in the A(9) (c.2560delA). When compared with identical non-coding repeats, TTK was found to be mutated significantly more often than expected without selective advantage. Since TTK inhibition is known to induce override of the mitotic spindle assembly checkpoint (SAC), we challenged mutated cancer cells with the microtubule-stabilizing drug paclitaxel. No evidence of checkpoint weakening was observed. As a conclusion, heterozygous TTK mutations occur at a high frequency in MSI CRCs. Unexpectedly, the plausible selective advantage in tumourigenesis does not appear to be related to SAC
Diminished salivary epidermal growth factor secretion : a link between Sjogren's syndrome and autoimmune gastritis?
Objectives: Healthy human labial salivary glands produce epidermal growth factor (EGF). In Sjogren's syndrome (SS), EGF staining is diminished. SS is also associated with chronic autoimmune corpus gastritis. We therefore hypothesized that EGF secretion would be diminished in SS and that this could affect gastric target cells.Methods: Salivary EGF secretion in SS was compared to that in healthy controls using an enzyme-linked immunosorbent assay (ELISA). EGF receptor (EGFR) immunoreactive cells in the gastric corpus of healthy human subjects were analysed using immunostaining.Results: Salivary secretion of EGF was diminished in SS patients (232.4, range 52.6-618.4, vs. 756.6, range 105.3-1631.6 pg/min, p=0.002). Proton-pump positive parietal cells were mostly EGFR immunoreactive whereas very few pepsinogen I (PGI)-positive cells were EGFR positive.Conclusions: As EGF is relatively acid resistant, salivary gland-derived EGF might participate in an exo/endocrine mode of parietal cell maintenance in the gastric corpus. Deficiency of salivary gland-derived EGF in SS patients may cause impairment of gastric parietal cells resulting in exposure of immunogenic cryptic antigens and loss of immunological self-tolerance.Peer reviewe
Diminished salivary epidermal growth factor secretion : a link between Sjogren's syndrome and autoimmune gastritis?
Objectives: Healthy human labial salivary glands produce epidermal growth factor (EGF). In Sjogren's syndrome (SS), EGF staining is diminished. SS is also associated with chronic autoimmune corpus gastritis. We therefore hypothesized that EGF secretion would be diminished in SS and that this could affect gastric target cells.Methods: Salivary EGF secretion in SS was compared to that in healthy controls using an enzyme-linked immunosorbent assay (ELISA). EGF receptor (EGFR) immunoreactive cells in the gastric corpus of healthy human subjects were analysed using immunostaining.Results: Salivary secretion of EGF was diminished in SS patients (232.4, range 52.6-618.4, vs. 756.6, range 105.3-1631.6 pg/min, p=0.002). Proton-pump positive parietal cells were mostly EGFR immunoreactive whereas very few pepsinogen I (PGI)-positive cells were EGFR positive.Conclusions: As EGF is relatively acid resistant, salivary gland-derived EGF might participate in an exo/endocrine mode of parietal cell maintenance in the gastric corpus. Deficiency of salivary gland-derived EGF in SS patients may cause impairment of gastric parietal cells resulting in exposure of immunogenic cryptic antigens and loss of immunological self-tolerance.Peer reviewe
Promoter methylation regulates cyclooxygenase expression in breast cancer
INTRODUCTION: Overexpression of cyclooxygenase (COX-2) is commonly observed in human cancers. In a murine model of metastatic breast cancer, we observed that COX-2 expression and enzyme activity were associated with enhanced tumorigenic and metastatic potential. In contrast to the high COX-2 expression in metastatic tumors, transplantation of poorly tumorigenic tumor cell lines to syngeneic mice results in less COX-2 expression and less COX-2 activity in vivo. Aberrant CpG island methylation, and subsequent silencing of the COX-2 promoter, has been observed in human cancer cell lines and in some human tumors of the gastrointestinal tract. METHODS: Using bisulfite modification and a methylation-specific PCR, we examined the methylation status of the COX-2 promoter in a series of four closely-related murine mammary tumors differing in COX-2 expression and metastatic potential. RESULTS: We showed that line 410, which does not express COX-2 in vivo, exhibited evidence of promoter methylation. Interestingly, the metastatic counterpart of this cell (line 410.4) displayed only the unmethylated COX-2 promoter, as did two additional cell lines (lines 66.1 and 67). The methylation patterns observed in vitro were maintained when these murine mammary tumor lines were transplanted to syngeneic mice. Treatment with the DNA demethylating agent 5-aza-deoxycytidine increased COX-2 mRNA, increased protein and increased enzyme activity (prostaglandin synthesis). CONCLUSIONS: These results indicate that COX-2 promoter methylation may be one mechanism by which tumor cells regulate COX-2 expression. Upregulation of COX-2 expression in closely related metastatic lesions versus nonmetastatic lesions may represent a shift towards the unmethylated phenotype
COX inhibitors and breast cancer
There is considerable evidence to suggest that prostaglandins play an important role in the development and growth of cancer. The enzyme cyclo-oxygenase (COX) catalyses the conversion of arachidonic acid to prostaglandins. In recent years, there has been interest in a possible role for COX inhibitors in the prevention and treatment of malignancy. Cyclo-oxygenase-2 (COX-2) is overexpressed in several epithelial tumours, including breast cancer. Preclinical evidence favours an antitumour role for COX inhibitors in breast cancer. However, the epidemiological evidence for an association is conflicting. Trials are being conducted to study the use of COX inhibitors alone and in combination with other agents in the chemoprevention of breast cancer, and in the neo-adjuvant, adjuvant, and metastatic treatment settings. In evaluating the potential use of these agents particularly in cancer chemoprophylaxis, the safety profile is as important as their efficacy. Concern over the cardiovascular safety of both selective and nonselective COX-inhibitors has recently been highlighted
- …