59 research outputs found

    Ab Initio Calculations of the Spin-Half XY Model

    Full text link
    In this article, the correlated basis-function (CBF) method is applied for the first time to the quantum spin-half {\it XY} model on the linear chain, the square lattice, and the simple cubic lattice. In this treatment of the quantum spin-half {\it XY} model a Jastrow ansatz is utilised to approximate the ground-state wave function. Results for the ground-state energy and the sublattice magnetisation are presented, and evidence that the CBF detects the quantum phase transition point in this model is also presented. The CBF results are compared to previous coupled cluster method (CCM) results for the spin-half {\it XY} model, and the two formalisms are then compared and contrasted.Comment: 10 pages, 3 figure

    Ab Initio Treatments of the Ising Model in a Transverse Field

    Full text link
    In this article, new results are presented for the zero-temperature ground-state properties of the spin-half transverse Ising model on various lattices using three different approximate techniques. These are, respectively, the coupled cluster method, the correlated basis function method, and the variational quantum Monte Carlo method. The methods, at different levels of approximation, are used to study the ground-state properties of these systems, and the results are found to be in excellent agreement both with each other and with results of exact calculations for the linear chain and results of exact cumulant series expansions for lattices of higher spatial dimension. The different techniques used are compared and contrasted in the light of these results, and the constructions of the approximate ground-state wave functions are especially discussed.Comment: 28 Pages, 4 Figures, 1 Tabl

    Multiple Thresholds in a Model System of Noisy Ion Channels

    Full text link
    Voltage-activated ion channels vary randomly between open and closed states, influenced by the membrane potential and other factors. Signal transduction is enhanced by noise in a simple ion channel model. The enhancement occurs in a finite range of signals; the range can be extended using populations of channels. The range increases more rapidly in multiple-threshold channel populations than in single-threshold populations. The diversity of ion channels may thus be present as a strategy to reduce the metabolic costs of handling a broad class of electrochemical signals.Comment: REVTeX 4, 5 pages, 4 figures; added paragrap

    Number--conserving model for boson pairing

    Full text link
    An independent pair ansatz is developed for the many body wavefunction of dilute Bose systems. The pair correlation is optimized by minimizing the expectation value of the full hamiltonian (rather than the truncated Bogoliubov one) providing a rigorous energy upper bound. In contrast with the Jastrow model, hypernetted chain theory provides closed-form exactly solvable equations for the optimized pair correlation. The model involves both condensate and coherent pairing with number conservation and kinetic energy sum rules satisfied exactly and the compressibility sum rule obeyed at low density. We compute, for bulk boson matter at a given density and zero temperature, (i) the two--body distribution function, (ii) the energy per particle, (iii) the sound velocity, (iv) the chemical potential, (v) the momentum distribution and its condensate fraction and (vi) the pairing function, which quantifies the ODLRO resulting from the structural properties of the two--particle density matrix. The connections with the low--density expansion and Bogoliubov theory are analyzed at different density values, including the density and scattering length regime of interest of trapped-atoms Bose--Einstein condensates. Comparison with the available Diffusion Monte Carlo results is also made.Comment: 21 pages, 12 figure

    Quantum phase transitions and thermodynamic properties in highly anisotropic magnets

    Full text link
    The systems exhibiting quantum phase transitions (QPT) are investigated within the Ising model in the transverse field and Heisenberg model with easy-plane single-site anisotropy. Near QPT a correspondence between parameters of these models and of quantum phi^4 model is established. A scaling analysis is performed for the ground-state properties. The influence of the external longitudinal magnetic field on the ground-state properties is investigated, and the corresponding magnetic susceptibility is calculated. Finite-temperature properties are considered with the use of the scaling analysis for the effective classical model proposed by Sachdev. Analytical results for the ordering temperature and temperature dependences of the magnetization and energy gap are obtained in the case of a small ground-state moment. The forms of dependences of observable quantities on the bare splitting (or magnetic field) and renormalized splitting turn out to be different. A comparison with numerical calculations and experimental data on systems demonstrating magnetic and structural transitions (e.g., into singlet state) is performed.Comment: 46 pages, RevTeX, 6 figure

    Cold Bose gases with large scattering lengths

    Full text link
    We calculate the energy and condensate fraction for a dense system of bosons interacting through an attractive short range interaction with positive s-wave scattering length aa. At high densities, n>>a3n>>a^{-3}, the energy per particle, chemical potential, and square of the sound speed are independent of the scattering length and proportional to n2/3n^{2/3}, as in Fermi systems.Comment: 4 pages, 3 figure

    Surface Region of Superfluid Helium as an Inhomogeneous Bose-Condensed Gas

    Full text link
    We present arguments that the low density surface region of self-bounded superfluid 4^4He systems is an inhomogeneous dilute Bose gas, with almost all of the atoms occupying the same single-particle state at T=0T = 0. Numerical evidence for this complete Bose-Einstein condensation was first given by the many-body variational calculations of 4^4He droplets by Lewart, Pandharipande and Pieper in 1988. We show that the low density surface region can be treated rigorously using a generalized Gross-Pitaevskii equation for the Bose order parameter.Comment: 4 pages, 1 Postscript figur

    Jastrow-type calculations of one-nucleon removal reactions on open ss-dd shell nuclei

    Full text link
    Single-particle overlap functions and spectroscopic factors are calculated on the basis of Jastrow-type one-body density matrices of open-shell nuclei constructed by using a factor cluster expansion. The calculations use the relationship between the overlap functions corresponding to bound states of the (A1)(A-1)-particle system and the one-body density matrix for the ground state of the AA-particle system. In this work we extend our previous analyses of reactions on closed-shell nuclei by using the resulting overlap functions for the description of the cross sections of (p,d)(p,d) reactions on the open ss-dd shell nuclei 24^{24}Mg, 28^{28}Si and 32^{32}S and of 32^{32}S(e,ep)(e,e^{\prime}p) reaction. The relative role of both shell structure and short-range correlations incorporated in the correlation approach on the spectroscopic factors and the reaction cross sections is pointed out.Comment: 11 pages, 5 figures, to be published in Phys. Rev.

    Momentum distributions in ^3He-^4He liquid mixtures

    Get PDF
    We present variational calculations of the one-body density matrices and momentum distributions for ^3He-^4He mixtures in the zero temperature limit, in the framework of the correlated basis functions theory. The ground-state wave function contains two- and three-body correlations and the matrix elements are computed by (Fermi)Hypernetted Chain techniques. The dependence on the ^3He concentration (x_3) of the ^4He condensate fraction (n0(4))(n_0^{(4)}) and of the ^3He pole strength (Z_F) is studied along the P=0 isobar. At low ^3He concentration, the computed ^4He condensate fraction is not significantly affected by the ^3He statistics. Despite of the low x_3 values, Z_F is found to be quite smaller than that of the corresponding pure ^3He because of the strong ^3He-^4He correlations and of the overall, large total density \rho. A small increase of n0(4)n_0^{(4)} along x_3 is found, which is mainly due to the decrease of \rho respect to the pure ^4He phase.Comment: 23 pages, 7 postscript figures, Revte

    Effects of Short Range Correlations on Ca Isotopes

    Get PDF
    The effect of Short Range Correlations (SRC) on Ca isotopes is studied using a simple phenomenological model. Theoretical expressions for the charge (proton) form factors, densities and moments of Ca nuclei are derived. The role of SRC in reproducing the empirical data for the charge density differences is examined. Their influence on the depletion of the nuclear Fermi surface is studied and the fractional occupation probabilities of the shell model orbits of Ca nuclei are calculated. The variation of SRC as function of the mass number is also discussed.Comment: 11 pages (RevTex), 6 Postscript figures available upon request at [email protected] Physical Review C in prin
    corecore