7 research outputs found
Enforcing Multifunctionality: A Pressure-Induced Spin-Crossover Photomagnet
Photomagnetic compounds are usually
achieved by assembling preorganized
individual molecules into rationally designed molecular architectures
via the bottom-up approach. Here we show that a magnetic response
to light can also be enforced in a nonphotomagnetic compound by applying
mechanical stress. The nonphotomagnetic cyano-bridged Fe<sup>II</sup>–Nb<sup>IV</sup> coordination polymer {[Fe<sup>II</sup>(pyrazole)<sub>4</sub>]<sub>2</sub>[Nb<sup>IV</sup>(CN)<sub>8</sub>]·4H<sub>2</sub>O}<sub><i>n</i></sub> (<b>FeNb</b>) has been
subjected to high-pressure structural, magnetic and photomagnetic
studies at low temperature, which revealed a wide spectrum of pressure-related
functionalities including the light-induced magnetization. The multifunctionality
of <b>FeNb</b> is compared with a simple structural and magnetic
pressure response of its analog {[Mn<sup>II</sup>(pyrazole)<sub>4</sub>]<sub>2</sub>[Nb<sup>IV</sup>(CN)<sub>8</sub>]·4H<sub>2</sub>O}<sub><i>n</i></sub> (<b>MnNb</b>). The <b>FeNb</b> coordination polymer is the first pressure-induced spin-crossover
photomagnet
Co-production and Co-creation: Creative Practice in Social Inclusion
We apply techniques drawn from interactive media art in fieldwork for social inclusion. Advanced mobile media and grassroots DIY techniques are used to bring creative practice with digital media into community based outreach work. We use these techniques in a participatory context that encourages the co-production of cultural output. We triangulate across artistic practice, technology engineering, and the social sciences to leverage methods from digital media art practice in contexts that result in social innovatio