27 research outputs found

    Fusion Pores Live on the Edge.

    Get PDF
    Biological transmission of vesicular content occurs by opening of a fusion pore. Recent experimental observations have illustrated that fusion pores between vesicles that are docked by an extended flat contact zone are located at the edge (vertex) of this zone. We modeled this experimentally observed scenario by coarse-grained molecular simulations and elastic theory. This revealed that fusion pores experience a direct attraction toward the vertex. The size adopted by the resulting vertex pore strongly depends on the apparent contact angle between the adhered vesicles even in the absence of membrane surface tension. Larger contact angles substantially increase the equilibrium size of the vertex pore. Because the cellular membrane fusion machinery actively docks membranes, it facilitates a collective expansion of the contact zone and increases the contact angle. In this way, the fusion machinery can drive expansion of the fusion pore by free energy equivalents of multiple tens of k <sub>B</sub> T from a distance and not only through the fusion proteins that reside within the fusion pore

    Thermodynamically reversible paths of the first fusion intermediate reveal an important role for membrane anchors of fusion proteins

    Get PDF
    Supramolecular & Biomaterials Chemistr

    Efficient quantification of lipid packing defect sensing by amphipathic peptides: comparing martini 2 and 3 with CHARMM36

    Get PDF
    In biological systems, proteins can be attracted to curved or stretched regions of lipid bilayers by sensing hydrophobic defects in the lipid packing on the membrane surface. Here, we present an efficient end-state free energy calculation method to quantify such sensing in molecular dynamics simulations. We illustrate that lipid packing defect sensing can be defined as the difference in mechanical work required to stretch a membrane with and without a peptide bound to the surface. We also demonstrate that a peptide's ability to concurrently induce excess leaflet area (tension) and elastic softening-a property we call the "characteristic area of sensing" (CHAOS) -and lipid packing sensing behavior are in fact two sides of the same coin. In essence, defect sensing displays a peptide's propensity to generate tension. The here-proposed mechanical pathway is equally accurate yet, computationally, about 40 times less costly than the commonly used alchemical pathway (thermodynamic integration), allowing for more feasible free energy calculations in atomistic simulations. This enabled us to directly compare the Martini 2 and 3 coarse-grained and the CHARMM36 atomistic force fields in terms of relative binding free energies for six representative peptides including the curvature sensor ALPS and two antiviral amphipathic helices (AH). We observed that Martini 3 qualitatively reproduces experimental trends while producing substantially lower (relative) binding free energies and shallower membrane insertion depths compared to atomistic simulations. In contrast, Martini 2 tends to overestimate (relative) binding free energies. Finally, we offer a glimpse into how our end-state-based free energy method can enable the inverse design of optimal lipid packing defect sensing peptides when used in conjunction with our recently developed evolutionary molecular dynamics (Evo-MD) method. We argue that these optimized defect sensors-aside from their biomedical and biophysical relevance-can provide valuable targets for the development of lipid force fields.Supramolecular & Biomaterials Chemistr

    Membrane Thinning Induces Sorting of Lipids and the Amphipathic Lipid Packing Sensor (ALPS) Protein Motif

    Get PDF
    Heterogeneities (e.g., membrane proteins and lipid domains) and deformations (e.g., highly curved membrane regions) in biological lipid membranes cause lipid packing defects that may trigger functional sorting of lipids and membrane-associated proteins. To study these phenomena in a controlled and efficient way within molecular simulations, we developed an external field protocol that artificially enhances packing defects in lipid membranes by enforcing local thinning of a flat membrane region. For varying lipid compositions, we observed strong thinning-induced depletion or enrichment, depending on the lipid's intrinsic shape and its effect on a membrane's elastic modulus. In particular, polyunsaturated and lysolipids are strongly attracted to regions high in packing defects, whereas phosphatidylethanolamine (PE) lipids and cholesterol are strongly repelled from it. Our results indicate that externally imposed changes in membrane thickness, area, and curvature are underpinned by shared membrane elastic principles. The observed sorting toward the thinner membrane region is in line with the sorting expected for a positively curved membrane region. Furthermore, we have demonstrated that the amphipathic lipid packing sensor (ALPS) protein motif, a known curvature and packing defect sensor, is effectively attracted to thinner membrane regions. By extracting the force that drives amphipathic molecules toward the thinner region, our thinning protocol can directly quantify and score the lipid packing sensing of different amphipathic molecules. In this way, our protocol paves the way toward high-throughput exploration of potential defect- and curvature-sensing motifs, making it a valuable addition to the molecular simulation toolbox.Supramolecular & Biomaterials Chemistr

    SNARE-mediated membrane fusion arrests at pore expansion to regulate the volume of an organelle.

    Get PDF
    Constitutive membrane fusion within eukaryotic cells is thought to be controlled at its initial steps, membrane tethering and SNARE complex assembly, and to rapidly proceed from there to full fusion. Although theory predicts that fusion pore expansion faces a major energy barrier and might hence be a rate-limiting and regulated step, corresponding states with non-expanding pores are difficult to assay and have remained elusive. Here, we show that vacuoles in living yeast are connected by a metastable, non-expanding, nanoscopic fusion pore. This is their default state, from which full fusion is regulated. Molecular dynamics simulations suggest that SNAREs and the SM protein-containing HOPS complex stabilize this pore against re-closure. Expansion of the nanoscopic pore to full fusion can thus be triggered by osmotic pressure gradients, providing a simple mechanism to rapidly adapt organelle volume to increases in its content. Metastable, nanoscopic fusion pores are then not only a transient intermediate but can be a long-lived, physiologically relevant and regulated state of SNARE-dependent membrane fusion

    Growth, polymorphism, and spatially controlled surface immobilization of biotinylated variants of IAPP(21-27) fibrils

    Get PDF
    FWN – Publicaties zonder aanstelling Universiteit Leide

    Cholesterol: The Plasma Membrane’s Constituent that Chooses Sides

    No full text
    Supramolecular & Biomaterials Chemistr

    SNAREs, tethers and SM proteins: how to overcome the final barriers to membrane fusion?

    Get PDF
    Physiological membrane vesicles are built to separate reaction spaces in a stable manner, even when they accidentally collide or are kept in apposition by spatial constraints in the cell. This requires a natural resistance to fusion and mixing of their content, which originates from substantial energetic barriers to membrane fusion [1]. To facilitate intracellular membrane fusion reactions in a controlled manner, proteinaceous fusion machineries have evolved. An important open question is whether protein fusion machineries actively pull the fusion reaction over the present free energy barriers, or whether they rather catalyze fusion by lowering those barriers. At first sight, fusion proteins such as SNARE complexes and viral fusion proteins appear to act as nano-machines, which mechanically transduce force to the membranes and thereby overcome the free energy barriers [2,3]. Whether fusion proteins additionally alter the free energy landscape of the fusion reaction via catalytic roles is less obvious. This is a question that we shall discuss in this review, with particular focus on the influence of the eukaryotic SNARE-dependent fusion machinery on the final step of the reaction, the formation and expansion of the fusion pore

    Where are those lipid nano rings?

    No full text
    Supramolecular & Biomaterials Chemistr

    Electrophoretic mobility does not always reflect the charge on an oil droplet

    Get PDF
    Electrophoresis is widely used to determine the electrostatic potential of colloidal particles. Oil droplets in pure water show negative or positive electrophoretic mobilities depending on the pH. This is commonly attributed to the adsorption of hydroxyl or hydronium ions, resulting in a negative or positive surface charge, respectively. This explanation, however, is not in agreement with the difference in isoelectric point and point of zero charge observed in experiment. Here we present molecular dynamics simulations of oil droplets in water in the presence of an external electric field but in the absence of any ions. The simulations reproduce the negative sign and the order of magnitude of the oil droplet mobilities at the point of zero charge in experiment. The electrostatic potential in the oil with respect to the water phase, induced by anisotropic dipole orientation in the interface, is positive. Our results suggest that electrophoretic mobility does not always reflect the net charge or electrostatic potential of a suspended liquid droplet and, thus, the interpretation of electrophoresis in terms of purely continuum effects may need to be reevaluated.
    corecore