530 research outputs found
Pseudo-time Schroedinger equation with absorbing potential for quantum scattering calculations
The Schroedinger equation with an energy-dependent complex absorbing
potential, associated with a scattering system, can be reduced for a special
choice of the energy-dependence to a harmonic inversion problem of a discrete
pseudo-time correlation function. An efficient formula for Green's function
matrix elements is also derived. Since the exact propagation up to time 2t can
be done with only t real matrix-vector products, this gives an unprecedently
efficient scheme for accurate calculations of quantum spectra for possibly very
large systems.Comment: 9 page
Conceptual Foundations for a Service-oriented Knowledge and Learning Architecture: Supporting Content, Process and Ontology Maturing
Abstract: The knowledge maturing model views learning activities as embedded into, interwoven with, and even indistinguishable from everyday work processes. Learning is understood as an inherently social and collaborative activity. The Knowledge Maturing Process Model structures this process into five phases: expressing ideas, distributing in communities, formalizing, ad-hoc learning and standardization. It is applicable not only for content but also to process knowledge and semantics. In the MATURE IP two toolsets will be develop that support the maturing process: a personal learning environment and an organisation learning environment integrating the levels of individuals, communities and organisation. The development is guided by the SER theory of seeding, evolutionary growth and reseeding and is based on generally applicable maturing services
Directly Comparing Handoff Protocols for Pediatric Hospitalists
BACKGROUND AND OBJECTIVES: Handoff protocols are often developed by brainstorming and consensus, and few are directly compared. We hypothesized that a handoff protocol (Flex 11) developed using a rigorous methodology would be more favorable in terms of clinicians’ attitudes, behaviors, cognitions, or time-on-task when performing handoffs compared with a prevalent protocol (Situation Background Assessment Recommendation [SBAR]).
METHODS: Using a between-groups, randomized control trial design (Flex 11 versus SBAR) during a pilot study in a simulated environment, 20 clinicians (13 attending physicians and 7 residents) received 3 patient handoffs from a standardized physician, managed the patients, and handed off the patients to the same standardized physician. Participants completed surveys assessing their attitudes and cognitions, and behaviors and handoff duration were assessed through observations.
RESULTS: All data were analyzed using independent samples t tests. For attitudes, “ease of use” ratings were lower for SBAR participants than Flex 11 participants (P , .01), and “being helpful” ratings were lower for SBAR participants than Flex 11 participants (P 5 .02). For behaviors, results indicate no significant difference in the information acquired between the SBAR and Flex 11 protocols. However, SBAR participants gave significantly less information than Flex 11 participants (P , .01). For cognitions, SBAR and Flex 11 participants reported similar workload except for frustration. For handoff duration, there were no significant differences between the protocols (P 5 .36).
CONCLUSIONS: The results suggest that Flex 11 is an efficient, beneficial tool in a simulated environment with pediatric clinicians. Future studies should evaluate this protocol in the inpatient setting
Norm estimates of complex symmetric operators applied to quantum systems
This paper communicates recent results in theory of complex symmetric
operators and shows, through two non-trivial examples, their potential
usefulness in the study of Schr\"odinger operators. In particular, we propose a
formula for computing the norm of a compact complex symmetric operator. This
observation is applied to two concrete problems related to quantum mechanical
systems. First, we give sharp estimates on the exponential decay of the
resolvent and the single-particle density matrix for Schr\"odinger operators
with spectral gaps. Second, we provide new ways of evaluating the resolvent
norm for Schr\"odinger operators appearing in the complex scaling theory of
resonances
Numerical Solution of the Time Dependent 3D Schrödinger Equation Describing Tunneling of Atoms from Anharmonic Traps
We present an efficient numerical method for the integration of the 3D Schrödinger equation. A tunneling problem of two interacting bosonic atoms confined in a 1D anharmonic trap has been successfully solved by means of this method. We demonstrate fast convergence of the final results with respect to spatial and temporal grid steps. The computational scheme is based on the operator-splitting technique with the implicit Crank-Nicolson algorithm on spatial sixth-order finite-differences. The computational time is proportional to the number of spatial grid points
Pauli's Principle in Probe Microscopy
Exceptionally clear images of intramolecular structure can be attained in
dynamic force microscopy through the combination of a passivated tip apex and
operation in what has become known as the "Pauli exclusion regime" of the
tip-sample interaction. We discuss, from an experimentalist's perspective, a
number of aspects of the exclusion principle which underpin this ability to
achieve submolecular resolution. Our particular focus is on the origins,
history, and interpretation of Pauli's principle in the context of interatomic
and intermolecular interactions.Comment: This is a chapter from "Imaging and Manipulation of Adsorbates using
Dynamic Force Microscopy", a book which is part of the "Advances in Atom and
Single Molecule Machines" series published by Springer
[http://www.springer.com/series/10425]. To be published late 201
GoMiner: a resource for biological interpretation of genomic and proteomic data
We have developed GoMiner, a program package that organizes lists of 'interesting' genes (for example, under- and overexpressed genes from a microarray experiment) for biological interpretation in the context of the Gene Ontology. GoMiner provides quantitative and statistical output files and two useful visualizations. The first is a tree-like structure analogous to that in the AmiGO browser and the second is a compact, dynamically interactive 'directed acyclic graph'. Genes displayed in GoMiner are linked to major public bioinformatics resources
From spin liquid to magnetic ordering in the anisotropic kagome Y-Kapellasite Y3Cu9(OH)19Cl8: a single crystal study
Y3Cu9(OH)19Cl8 realizes an original anisotropic kagome model hosting a rich
magnetic phase diagram [M. Hering et al, npj Computational Materials 8, 1
(2022)]. We present an improved synthesis of large phase-pure single crystals
via an external gradient method. These crystals were investigated in details by
susceptibility, specific heat, thermal expansion, neutron scattering and local
muSR and NMR techniques. At variance with polycristalline samples, the study of
single crystals gives evidence for subtle structural instabilities at 33K and
13K which preserve the global symmetry of the system and thus the magnetic
model. At 2.1K the compound shows a magnetic transition to a coplanar (1/3,1/3)
long range order as predicted theoretically. However our analysis of the spin
wave excitations yields magnetic interactions which locate the compound closer
to the phase boundary to a classical jammed spin liquid phase. Enhanced quantum
fluctuations at this boundary may be responsible for the strongly reduced
ordered moment of the Cu2+, estimated to be 0.075muB from muSR
The dynamical Green's function and an exact optical potential for electron-molecule scattering including nuclear dynamics
We derive a rigorous optical potential for electron-molecule scattering
including the effects of nuclear dynamics by extending the common many-body
Green's function approach to optical potentials beyond the fixed-nuclei limit
for molecular targets. Our formalism treats the projectile electron and the
nuclear motion of the target molecule on the same footing whereby the dynamical
optical potential rigorously accounts for the complex many-body nature of the
scattering target. One central result of the present work is that the common
fixed-nuclei optical potential is a valid adiabatic approximation to the
dynamical optical potential even when projectile and nuclear motion are
(nonadiabatically) coupled as long as the scattering energy is well below the
electronic excitation thresholds of the target. For extremely low projectile
velocities, however, when the cross sections are most sensitive to the
scattering potential, we expect the influences of the nuclear dynamics on the
optical potential to become relevant. For these cases, a systematic way to
improve the adiabatic approximation to the dynamical optical potential is
presented that yields non-local operators with respect to the nuclear
coordinates.Comment: 22 pages, no figures, accepted for publ., Phys. Rev.
- …