39 research outputs found

    Analytical Comparison of Flat and Vertical Organizational Structures

    Get PDF
    The emerging organizational paradigm involves complementary changes in multiple dimensions. Traditional perspectives on management are inadequate to cope with a hypercompetitive and fast changing environment. New methods and management systems are demanded by the complex, rapidly evolving, virtual business environment of present day. As economies and organizations are increasingly becoming complex, environment changing more rapidly, and acceptable response times diminishing, the old management structures are simply failing to cope with change and development. This paper has addressed the structure of modern organizations in the context of a fundamental change in organizational structure which is currently taking place in the way companies view their organizations and the inherent requirements and results. This change has involved a shift in perspective from the commonly adopted vertical organizational structure to flat type of organizational structure. Paper has also discussed the traditional organizational structures which are being replaced by flat organizational structure and aims to save capital by cost cutting. Various core benefits have also been discussed and compared with other type of organizational structures. Keywords: Organizational Structure, Flat Organizations, hypercompetitive, vertical organizational structure, flat organizational structure

    Employee Obsolescence and Counterproductive Work Behaviour among Employees of Government Organizations and Departments

    Get PDF
    Employees can survive in the organizations only if they become accustomed continuously with the changing environment. Employees working in different field areas confront with frequent changes and technological innovations at their work place. Employees who are not able to match with such changes of work place get frustrated and may indulge in Counterproductive Work Behavior. Present research has focused on the issues of Employee Obsolescence and Counterproductive Work Behavior among employees. To conduct the research, a sample of 224 employees working at various positions in government organizations and departments was selected randomly on availability basis. Chosen subjects were tested for employee obsolescence and Counterproductive Work Behavior by using Professional Obsolescence Scale (Chauhan 2000) and Counterproductive Work Behavior Checklist (CWB-C) (Paul E. Spector, 2006) respectively. Tested subjects were divided into two groups of 72 subjects each. These two groups of obsolete and non-obsolete employees were tested for their Counterproductive Work Behavior. Findings of the study show that mean score for Counterproductive Work Behavior of obsolete employee’s group (116.67) was very high in comparison to the mean score (64.01) of non-obsolete employee’s group. To examine the difference between mean score values for Counterproductive Work Behavior among obsolete and non-obsolete employee’s group, t-test was used. T-test value (t = 3.57, p < 0.05) shows that there was significant difference between the mean score values of obsolete employee’s group and non-obsolete employee’s group which means there was positive and significant difference in the tendency of Counterproductive Work Behavior among obsolete and non-obsolete employee’s groups. Obsolete employees were having higher tendency of Counterproductive Work Behavior in comparison to non-obsolete employees. Keywords: Counterproductive Work Behavior, Employee Obsolescence, Employees, Technological Changes, Obsolete, Non-Obsolet

    In vitro and in vivo anti-angiogenic activities of milk sphingolipids

    Get PDF
    Anti-angiogenic therapies aimed at halting new blood vessel formation are now being extensively studied as inhibitors of excessive angiogenesis. Conversely, compounds with ability to stimulate angiogenesis are being considered as a therapeutic approach for insufficient angiogenesis. Food-borne bioactive compounds such as genistein, resveratrol, curcumin, the Bowman-Birk inhibitor, and catechins are being potentially established as good candidates for angioprevention. The aim of our study was to determine the anti-or pro-angiogenic activity of milk-based glycosphingolipids such as C6-ceramide (Cer), Sphingomyelin (SPM) and Glucosylceramide (GluCer), in vitro, using breast cancer (MCF-7), colon cancer (Caco-2) and prostate cancer (DU-145) cell-lines, on angiogenic factors such as vascular endothelial growth factor (VEGF), cathepsin-D and hypoxia inducing factor-1alpha (HIF-1α) expression and cell migration under normoxia and hypoxia. Another aim was to conduct an in vivo study using chorioallantoic membrane (CAM) and zebrafish model system to substantiate the in vitro results. Breast cancer cells (MCF-7) treated with SPM had reduced cell migration under hypoxic conditions. Cathepsin-D expression under SPM treated MCF-7 cells was significantly lower under both conditions. GlcCer had significant apoptotic activity under hypoxic MCF-7 cells. Colon cancer cells (Caco-2) treated with Cer had reduced cell growth at \u3e 50 μM under normoxic as well as hypoxic conditions. Cathepsin-D, cell migration and HIF-1α expression were significantly reduced under hypoxic condition. SPM had low cathepsin-D levels and cell migrations in normoxic and hypoxic conditions as well as low HIF-1α at hypoxic condition. In GlcCer treated cells, the levels of cathepsin-D and cell migration were reduced under normoxic and hypoxic conditions. Prostate cancer cells (DU-145) exposed to SPM had reduced cell viability. All the compounds had lower levels of VEGF expression at normoxic conditions at 50 μM exposure; only GlcCer had lower VEGF expression under hypoxic condition. The cell migration was reduced under normoxic condition and also for cells exposed to Cer under hypoxic condition. In vivo results showed ceramide was anti-angiogenic as confirmed by both CAM assay as well as zebrafish model. SPM proved to facilitate sprouting, however, the blood vessels looked dilated. GlcCer disrupted the neovascularization in CAM model and restricted the ISV formation in zebrafish

    Treatment of organic and inorganic pollutants in municipal wastewater by agricultural by-product based granular activated carbons (GAC)

    Get PDF
    The objective of this investigation was to evaluate pecan and almond shell-based granular activated carbon\u27s viability to effectively remove organic and inorganic pollutants in municipal wastewater compared to commercial carbons, Filtrasorb 200 (bituminous coal-based), and GRC-20, 206C AW (coconut shell-based). The solution to the objective was approached under three distinct phases, namely (I) physical and chemical characterization of the pecan and almond shell-based experimental and bituminous coal and coconut shell-based commercial granular activated carbons; (II) treatment of organic contaminants in municipal wastewater by experimental and commercial GACs; (III) treatment of inorganic contaminants in municipal wastewater by experimental and commercial GACs. Phase I study showed that the almond shell-based chemically activated carbon (ALA) had the largest total surface area (1340 m2/g) including the commercial carbons. The bulk densities of both physically and chemically (0.49 to 0.57 g/m3) -activated pecan shell-based carbons were comparable to those of commercial carbons (0.49 to 0.54 g/m3). ALA had the highest attrition (31.68%) compared to chemically activated pecan shell-based carbon (PSA) with lowest attrition (7.10%). PSA also contained the lowest ash, a desirable attribute. Activation affected conductivity. Chemical activation lowered conductivity when compared to physical activation. Multivariate analysis showed that steam- and acid-activated pecan shell-based carbons (PSS and PSA) had more similarity to commercial carbons. Phase II study showed that PSS had higher adsorptive capacity towards Chemical Oxygen Demand (COD) than carbon dioxide-activated pecan shell-based carbon (PSC) and commercial carbons. Activation methods of the carbons affected the pH. The study on adsorption of volatile organic compounds (VOCs) showed that all the experimental carbons exhibited efficient adsorbability of benzene and other halogenated aliphatic compounds under study. Multivariate analysis indicated, PSS and PSA to be similar in terms of overall VOC adsorption. Phase III study showed that the PSS with higher log x/m (solute adsorbed/ carbon dosage) ratio and log Ce ranging from 0.5 to 1.0 g/100 ml is most suitable for the adsorption of Cu2+. However, within the four carbons used for the adsorption of Pb2+ and Zn2+, PSA was found to be more effective compared to PSS and PSC

    Dimensioning Cellular Wimax Networks

    Get PDF

    Performance of a UV-A LED system for degradation of aflatoxins B1 and M1 in pure water: kinetics and cytotoxicity study

    Get PDF
    The efficacy of a UV-A light emitting diode system (LED) to reduce the concentrations of aflatoxin B1, aflatoxin M1 (AFB1, AFM1) in pure water was studied. This work investigates and reveals the kinetics and main mechanism(s) responsible for the destruction of aflatoxins in pure water and assesses the cytotoxicity in liver hepatocellular cells. Irradiation experiments were conducted using an LED system operating at 365 nm (monochromatic wave-length). Known concentrations of aflatoxins were spiked in water and irradiated at UV-A doses ranging from 0 to 1,200 mJ/cm2. The concentration of AFB1 and AFM1 was determined by HPLC with fluorescence detection. LC–MS/MS product ion scans were used to identify and semi-quantify degraded products of AFB1 and AFM1. It was observed that UV-A irradiation significantly reduced aflatoxins in pure water. In comparison to control, at dose of 1,200 mJ/cm2 UV-A irradiation reduced AFB1 and AFM1 concentrations by 70 ± 0.27 and 84 ± 1.95%, respectively. We hypothesize that the formation of reactive species initiated by UV-A light may have caused photolysis of AFB1 and AFM1 molecules in water. In cell culture studies, our results demonstrated that the increase of UV-A dosage decreased the aflatoxins-induced cytotoxicity in HepG2 cells, and no significant aflatoxin-induced cytotoxicity was observed at UV-A dose of 1,200 mJ/cm2. Further results from this study will be used to compare aflatoxins detoxification kinetics and mechanisms involved in liquid foods such as milk and vegetable oils

    Biochars From Solid Organic Municipal Wastes For Soil Quality Enhancement

    Get PDF
    The overall municipal organic waste in Qatar accounts for 57% of municipal waste generated annually. Organic solid wastes such as food, newspapers, packaging, furniture woods and wood from building demolition have traditionally been placed in landfill, which create issues of sustainability for a country like Qatar with small land mass. While the recently opened Doha solid waste treatment facility contributed to alleviating the pressure on Landfill sites through composting and incineration, new value-added use of solid organic waste are needed for environmental and economic sustainability. Fortunately, biochars from mixed organic solid wastes can be used in soil amendment for food security and long term carbon sequestration for environmental sustainability. We hypothesize that deficiencies in depleted Qatari soils can be remedied by the application of biochars that are custom-designed to possess the right physicochemical characteristics suitable to improve soil fertility. Hence, this study was conducted to (1) Optimize production of biochars from mixed organic waste for desired physicochemical characteristics as soil enhancers. (2) Produce and characterize designer biochars using optimum production conditions for testing in soil incubation experiments. Select municipal organic wastes (newspaper, cardboard, woodchips and landscaping residues) individually and in a 25% blend were used as a precursor for biochar preparation. These residues were chosen due to their commonality in municipal solid waste streams. A complete 5 × 3 × 3 factorial design was used in this study with five biochar precursors (the 4 solid waste materials and a 25% blend/mixture), 3 sets of pyrolysis temperatures (350, 500, and 750°C) and 3 sets of pyrolysis residence time (2, 4 and 6 hrs). Data obtained showed that biochar yield was in the range of 21- 62% across all feedstocks and pyrolysis conditions. The highest yield was observed in newspaper-based biochars pyrolized at 350°C for 2 hrs. Key parameters such as pH, electrical conductivity bulk density and surface area, which positively improve water and nutrient-holding capacity in biochar-amended soil, varied depending on the precursors and production conditions. Bulk density was high in woodchips-based biochars but was similar among all other biochars, irrespective of precursors and pyrolysis conditions. The total surface area of biochars was low but showed dramatic increase in all feedstocks at 700°C pyrolysis temperature. The highest electrical conductivity observed in cardboard-based biochars pyrolized at 700C. Biochars produced from selected waste precursors were acidic except those produced at 700°C temperature where pH became alkaline. The wide range of biochar pH suggests potential tailoring to remediate the specific soil acidity. Cumulatively, biochars showed promising results for improving soil fertility parameters such as better water holding capacity, pH stabilization, and increased electrical conductivity of soil for better aggregation. These findings indicate that solid organic municipal wastes hold promising potential as precursors for manufacturing of value-added biochars with varied physicochemical characteristics allowing them to be used not only as an alternative to bio-waste management and greenhouse gas mitigation but also as means to improve depleted Qatari soil as the country embarks on its ambitious goals of ensuring food security and environmental sustainability.qscienc

    Granular Activated Carbons from Agricultural By-products: Process Description and Estimated Cost of Production (Bulletin #881)

    Get PDF
    This bulletin is a follow-up, in part, of Bulletin #869, “Granular Activated Carbons from Agricultural By-products: Preparation, Properties and Application in Cane Sugar Refining.” An estimation of production costs for these by product-based carbons was considered prudent because of the potential interest from both bagasse and shell producers and activated carbon manufacturers based on the use of these carbons in various applications compared to commercial carbons.https://digitalcommons.lsu.edu/agcenter_bulletins/1034/thumbnail.jp

    Impact of UV-C irradiation on the quality, safety, and cytotoxicity of cranberry-flavored water using a novel continuous flow UV system

    Get PDF
    The influence of short wavelength UV-C irradiation at 254 nm on microbial inactivation, anthocyanins stability, ascorbic acid, and cytotoxicity of formulated cranberry flavored water was studied. Escherichia coli ATCC 25922 and Salmonella enterica serovar Typhimurium ATCC 13311 were inactivated by more than 5 log10 at UV-C fluence of 21 mJ cm−2. At UV-C fluence of 40 mJ cm−2 the content of ascorbic acid was 82% of that in the untreated beverage. The concentrations of the anthocyanins (Cy3Ar, Cy3Ga, Pe3Ar, and Pe3Ga) were not significantly affected at the same treatment level. Cytotoxicity evaluation of the irradiated beverage on normal colon (CCD-18Co), colon cancer (HCT-116), and healthy mice liver (AML-12) cells showed that UV-C irradiation had no cytotoxic effects on all three cell lines. This research study suggests that UV-C treatment of formulated cranberry flavored water can achieve high levels of microbial inactivation without significantly decreasing the concentration of anthocyanins, ascorbic acid content or generating cytotoxic effects. These results suggest that UV-C irradiation can be an alternative to thermal pasteurization in producing high quality beverages
    corecore