17 research outputs found

    Impacts of agricultural land use on biological integrity: a causal analysis

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/116919/1/eap20112183128.pd

    Predicting Future Changes in Muskegon River Watershed Game Fish Distributions under Future Land Cover Alteration and Climate Change Scenarios

    Full text link
    Future alterations in land cover and climate are likely to cause substantial changes in the ranges of fish species. Predictive distribution models are an important tool for assessing the probability that these changes will cause increases or decreases in or the extirpation of species. Classification tree models that predict the probability of game fish presence were applied to the streams of the Muskegon River watershed, Michigan. The models were used to study three potential future scenarios: (1) land cover change only, (2) land cover change and a 3°C increase in air temperature by 2100, and (3) land cover change and a 5°C increase in air temperature by 2100. The analysis indicated that the expected change in air temperature and subsequent change in water temperatures would result in the decline of coldwater fish in the Muskegon watershed by the end of the 21st century while cool‐ and warmwater species would significantly increase their ranges. The greatest decline detected was a 90% reduction in the probability that brook trout Salvelinus fontinalis would occur in Bigelow Creek. The greatest increase was a 276% increase in the probability that northern pike Esox lucius would occur in the Middle Branch River. Changes in land cover are expected to cause large changes in a few fish species, such as walleye Sander vitreus and Chinook salmon Oncorhynchus tshawytscha, but not to drive major changes in species composition. Managers can alter stream environmental conditions to maximize the probability that species will reside in particular stream reaches through application of the classification tree models. Such models represent a good way to predict future changes, as they give quantitative estimates of the n‐dimensional niches for particular species.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141570/1/tafs0396.pd

    The effect of pH, aluminum, and chelator manipulations on the growth of acidic and circumneutral species of Asterionella

    Full text link
    The growth rates of two diatoms, acidophilic Asterionella ralfsii and circumneutral A. formosa , were differentially affected by varying pH, Al, and EDTA in chemically defined media. Free Al ion concentration increased as pH and EDTA concentration decreased. Free trace metal ion concentration decreased as EDTA levels increased but increased by orders of magnitude upon addition of Al. pH had an overriding species specific effect on growth rate; at low pH A. ralfsii had higher growth rates than A. formosa and vice versa at high pH. For both species higher EDTA levels depressed growth rates. Moderate additions of Al generally resulted in growth stimulation. The growth rate stimulations, especially at 200 and 400 ÎŒg L −1 Al additions, correlate to increases in free trace metal ion concentrations. The EDTA-AI interaction effects on growth rate were both pH and concentration dependent: at pH 7 both species were stimulated by addition of Al at all EDTA levels (except A. ralfsii at 5.0 mM EDTA and A. formosa at 0.5 mNM EDTA); at pH 6 Al addition either stimulated or had no effect on the growth rates of both species (except at low EDTA and high Al levels); at pH 5 A. formosa did not grow and additions of 200 ÎŒg L −1 Al stimulated growth of A. ralfsii . It is likely that the effect of pH, Al, and EDTA on speciation of essential or toxic trace metals affects growth rates of these diatoms in a species specific manner.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43905/1/11270_2004_Article_BF00282626.pd

    Comparing Effects of Nutrients on Algal Biomass in Streams in Two Regions with Different Disturbance Regimes and with Applications for Developing Nutrient Criteria

    Full text link
    Responses of stream algal biomass to nutrient enrichment were studied in two regions where differences in hydrologic variability cause great differences in herbivory. Around northwestern Kentucky (KY) hydrologic variability constrains invertebrate biomass and their effects on algae, but hydrologic stability in Michigan (MI) streams permits accrual of high herbivore densities and herbivory of benthic algae. Multiple indicators of algal biomass and nutrient availability were measured in 104 streams with repeated sampling at each site over a 2−month period. Many measures of algal biomass and nutrient availability were positively correlated in both regions, however the amount of variation explained varied with measures of biomass and nutrient concentration and with region. Indicators of diatom biomass were higher in KY than MI, but were not related to nutrient concentrations in either region. Chl   a and % area of substratum covered by Cladophora were positively correlated to nutrient concentrations in both regions. Cladophora responded significantly more to nutrients in MI than KY. Total phosphorus (TP) and total nitrogen (TN) explained similar amounts of variation in algal biomass, and not significantly more variation in biomass than dissolved nutrient concentrations. Low N:P ratios in the benthic algae indicated N as well as P may be limiting their accrual. Most observed responses in benthic algal biomass occurred in nutrient concentrations between 10 and 30 Όg TP  l −1 and between 400 and 1000 Όg TN l −1 .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42905/1/10750_2005_Article_1611.pd

    Impacts of agricultural land use on biological integrity: a causal analysis

    No full text
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/116919/1/eap20112183128.pd

    Appendix D. Total standardized effects of basin cropland and riparian forested wetland on nutrients in the national and regional SEMs.

    No full text
    Total standardized effects of basin cropland and riparian forested wetland on nutrients in the national and regional SEMs

    Appendix A. Study unit features: summary of dominant study unit features. Mean values and ranges are shown for annual precipitation, air temperatures, and study site basin area.

    No full text
    Study unit features: summary of dominant study unit features. Mean values and ranges are shown for annual precipitation, air temperatures, and study site basin area

    Landscape Prediction and Mapping of Game Fish Biomass, an Ecosystem Service of Michigan Rivers

    No full text
    <div><p></p><p>The increased integration of ecosystem service concepts into natural resource management places renewed emphasis on prediction and mapping of fish biomass as a major provisioning service of rivers. The goals of this study were to predict and map patterns of fish biomass as a proxy for the availability of catchable fish for anglers in rivers and to identify the strongest landscape constraints on fish productivity. We examined hypotheses about fish responses to total phosphorus (TP), as TP is a growth-limiting nutrient known to cause increases (subsidy response) and/or decreases (stress response) in fish biomass depending on its concentration and the species being considered. Boosted regression trees were used to define nonlinear functions that predicted the standing crops of Brook Trout <i>Salvelinus fontinalis</i>, Brown Trout <i>Salmo trutta</i>, Smallmouth Bass <i>Micropterus dolomieu</i>, panfishes (seven centrarchid species), and Walleye <i>Sander vitreus</i> by using landscape and modeled local-scale predictors. Fitted models were highly significant and explained 22–56% of the variation in validation data sets. Nonlinear and threshold responses were apparent for numerous predictors, including TP concentration, which had significant effects on all except the Walleye fishery. Brook Trout and Smallmouth Bass exhibited both subsidy and stress responses, panfish biomass exhibited a subsidy response only, and Brown Trout exhibited a stress response. Maps of reach-specific standing crop predictions showed patterns of predicted fish biomass that corresponded to spatial patterns in catchment area, water temperature, land cover, and nutrient availability. Maps illustrated predictions of higher trout biomass in coldwater streams draining glacial till in northern Michigan, higher Smallmouth Bass and panfish biomasses in warmwater systems of southern Michigan, and high Walleye biomass in large main-stem rivers throughout the state. Our results allow fisheries managers to examine the biomass potential of streams, describe geographic patterns of fisheries, explore possible nutrient management targets, and identify habitats that are candidates for species management.</p><p>Received May 20, 2014; accepted November 6, 2014</p></div
    corecore