24 research outputs found

    〈Original Papers〉Continuous heavy precipitation with a winter occluding cyclone captured by GPM satellite in central Japan

    Get PDF
    A fifth highest event of two-day accumulation precipitation in Honsyu area (Jan. 17-18, 2016) was nominated during the 10 winters since 2006 (Anzai and Ueno, 2018). Then, using Global Precipitation Measurement (GPM) dual-frequency precipitation radar (DPR) products, a case study was conducted to reveal the three-dimensional and synoptic scale structures of a precipitation system associated with a cyclone the mature stage. The disturbance in the front was composed of wide-ranging stratiform precipitation with a maximum of more than 2 km level by a poleward-ascending warm airstream moving over an easterly cold air mass. Subsequent convective precipitation was associated with an upper front due to dry intrusion over the warm conveyor belt. Successions of the stratiform to areas of convective precipitation were confirmed by surface weather radar images. We clarify that the combination of stratiform and convective precipitation was dependent on the conveyor belt structure of the cyclone toward the occluding stage and caused exceptional slow-moving heavy precipitation in central Japan

    Localized impacts and economic implications from high temperature disruption days under climate change

    Get PDF
    Most studies into the effects of climate change have headline results in the form of a global change in mean temperature. More useful for businesses and governments, however, are measures of the localized impact, and also of extremes rather than averages. We have addressed this by examining the change in frequency of exceeding a daily mean temperature threshold, defined as ‘disruption days’, as it is often this exceedance which has the most dramatic impacts on personal or economic behaviour. Our exceedance analysis tackles the resolution of climate change both geographically and temporally, the latter specifically to address the 5- to 20-year time horizon which can be recognized in business planning. We apply bias correction with quantile mapping to meteorological reanalysis data from ECMWF ERA5 and output from CMIP5 climate model simulations. By determining the daily frequency at which a mean temperature threshold is exceeded in this bias-corrected dataset, we can compare predicted and historic frequencies to estimate the change in the number of disruption days. Furthermore, by combining results from 18 different climate models, we can estimate the likelihood of more extreme events, taking into account model variations. This is useful for worst-case scenario planning. Taking the city of Chicago as an example, the expected frequency of years with 40 or more disruption days above the 25°C threshold rises by a factor of four for a time period centred on 2040, compared with a period centred on 2000. Alternately, looking at the change in the number of days at a given likelihood, an example is Shenzhen, where the number of disruption days in a once-per-decade event exceeding the 25°C or 30°C threshold is expected to rise by a factor of four. In a future stage, superimposing these results onto maps of, for instance, GDP sensitivity or production days lost, will provide more accurate and targeted conclusions for future impacts of climate change. This method of quantifying costs on business-relevant timescales will enable businesses and governments properly include risks associated with facilities, plan mitigating actions and make accurate provisions. It can also, for example, inform their disclosure of physical risks under the framework of the Task Force on Climate-related Financial Disclosures. This approach is equally applicable to other weather-related, localized phenomena likely to be impacted by climate change

    Fundamental study on countermeasures against subharmonic vibration of order 1/2 in automatic transmissions for cars

    No full text
    In automatic transmissions for cars, a damper is installed in the lock-up clutch to absorb torsional vibrations caused by combustion in the engine. Although a damper with low stiffness reduces the torsional vibration, low-stiffness springs are difficult to use because of space limitations. To address this problem, dampers have been designed using a piecewise-linear spring having three different stages of stiffness. However, a nonlinear subharmonic vibration of order 1/2 occurs because of the nonlinearity of the piecewise-linear spring in the damper. In this study, we experimentally and analytically examined a countermeasure against the subharmonic vibration by increasing the stages of the piecewise-linear spring using the one-degree-of-freedom system model. We found that the gap between the switching points of the piecewise-linear spring was the key to vibration reduction. The experimental results agreed with results of the numerical analyses

    Fundamental study on countermeasures against subharmonic vibration of order 1/2 in automatic transmissions for cars

    No full text
    In automatic transmissions for cars, a damper is installed in the lock-up clutch to absorb torsional vibrations caused by combustion in the engine. Although a damper with low stiffness reduces the torsional vibration, low-stiffness springs are difficult to use because of space limitations. To address this problem, dampers have been designed using a piecewise-linear spring having three different stages of stiffness. However, a nonlinear subharmonic vibration of order 1/2 occurs because of the nonlinearity of the piecewise-linear spring in the damper. In this study, we experimentally and analytically examined a countermeasure against the subharmonic vibration by increasing the stages of the piecewise-linear spring using the one-degree-of-freedom system model. We found that the gap between the switching points of the piecewise-linear spring was the key to vibration reduction. The experimental results agreed with results of the numerical analyses

    Pivotal role of myeloid‐derived suppressor cells in infection‐related tumor growth

    No full text
    Abstract Background In this study, we investigated infection‐related tumor growth, focusing on myeloid‐derived suppressor cells (MDSCs) in clinical and experimental settings. Patients and Methods In the clinical study, a total 109 patients who underwent gastrectomy or esophagectomy were included. Blood samples were collected from a preoperative time point through 3 months after surgery, and MDSCs were analyzed using flow cytometry. In animal experiments, peritonitis model mice were created by CLP method. We investigated the number of splenic MDSCs in these mice using flow cytometry. Malignant melanoma cells (B16F10) were inoculated on the back of the mice, and tumor growth was monitored. We compared the level of MDSC infiltration around the tumor and the migration ability between CLP and sham‐operated mice‐derived MDSCs. Finally, we focused on PD‐L1+MDSCs to examine the effectiveness of anti‐PD‐L1 antibodies on tumor growth in CLP mice. Results In patients with postoperative infectious complication, MDSC number was found to remain elevated 3 months after surgery, when the inflammatory responses were normalized. CLP mice showed increased numbers of MDSCs, and following inoculation with B16F10 cells, this higher number of MDSCs was associated with significant tumor growth. CLP‐mice‐derived MDSCs had higher levels of accumulation around the tumor and had more enhanced migration ability. Finally, CLP mice had increased numbers of PD‐L1+MDSCs and showed more effective inhibition of tumor growth by anti‐PD‐L1 antibodies compared to sham‐operated mice. Conclusion Long‐lasting enhanced MDSCs associated with infection may contribute to infection‐related tumor progression

    Evaluation of variability in high-resolution protein structures by global distance scoring

    No full text
    Systematic analysis of the statistical and dynamical properties of proteins is critical to understanding cellular events. Extraction of biologically relevant information from a set of high-resolution structures is important because it can provide mechanistic details behind the functional properties of protein families, enabling rational comparison between families. Most of the current structural comparisons are pairwise-based, which hampers the global analysis of increasing contents in the Protein Data Bank. Additionally, pairing of protein structures introduces uncertainty with respect to reproducibility because it frequently accompanies other settings for superimposition. This study introduces intramolecular distance scoring for the global analysis of proteins, for each of which at least several high-resolution structures are available. As a pilot study, we have tested 300 human proteins and showed that the method is comprehensively used to overview advances in each protein and protein family at the atomic level. This method, together with the interpretation of the model calculations, provide new criteria for understanding specific structural variation in a protein, enabling global comparison of the variability in proteins from different species

    <Original Papers> Continuous heavy precipitation with a winter occluding cyclone captured by GPM satellite in central Japan

    No full text

    Effect of ionic size on solvate stability of glyme-based solvate ionic liquids

    No full text
    A series of binary mixtures composed of glymes (triglyme, G3; tetraglyme, G4; pentaglyme, G5) and alkali-metal bis(trifluoromethanesulfonyl)amide salts (M[TFSA]; M = Li, Na, and K) were prepared, and the correlation between the composition and solvate stability was systematically investigated. Their phase diagrams and Raman spectra suggested complexation of the glymes with M[TFSA] in 1:1 and/or 2:1 molar ratio(s). From isothermal stability measurements, it was found that the formation of structurally stable complexes in the solid state did not necessarily ensure their thermal stability in the liquid state, especially in the case of 2:1 complexes, where uncoordinating or highly exchangeable glyme ligands existed in the molten complexes. The phase-state-dependent Raman spectra also supported the presence of free glymes in certain liquid complexes. The effect of the electric field induced by the alkali-metal cations on the oxidative stability of certain glyme complexes was examined by linear sweep voltammetry and quantum chemical calculations. Although the actual oxidative stability of complexes did not necessarily reflect the calculated HOMO energy levels of the glymes, the strong electric field induced by the smaller M+ cations and proper coordination structures impart high stability to the glyme complexes. The results of thermogravimetry of complexes with different M+ cations revealed that a balance of competitive interactions of the M+ ions with the glymes and [TFSA]- anions predominates the thermal stability. (Chemical Equation Presented)
    corecore