126 research outputs found

    Combining two Meishan F2 crosses improves the detection of QTL on pig chromosomes 2, 4 and 6

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In pig, a number of experiments have been set up to identify QTL and a multitude of chromosomal regions harbouring genes influencing traits of interest have been identified. However, the mapping resolution remains limited in most cases and the detected QTL are rather inaccurately located. Mapping accuracy can be improved by increasing the number of phenotyped and genotyped individuals and/or the number of informative markers. An alternative approach to overcome the limited power of individual studies is to combine data from two or more independent designs.</p> <p>Methods</p> <p>In the present study we report a combined analysis of two independent design (a French and a Dutch F2 experimental designs), with 2000 F2 individuals. The purpose was to further map QTL for growth and fatness on pig chromosomes 2, 4 and 6. Using QTL-map software, uni- and multiple-QTL detection analyses were applied separately on the two pedigrees and then on the combination of the two pedigrees.</p> <p>Results</p> <p>Joint analyses of the combined pedigree provided (1) greater significance of shared QTL, (2) exclusion of false suggestive QTL and (3) greater mapping precision for shared QTL.</p> <p>Conclusions</p> <p>Combining two Meishan x European breeds F2 pedigrees improved the mapping of QTL compared to analysing pedigrees separately. Our work was facilitated by the access to raw phenotypic data and DNA of animals from both pedigrees and the combination of the two designs with the addition of new markers allowed us to fine map QTL without phenotyping additional animals.</p

    Recombinational landscape of porcine X chromosome and individual variation in female meiotic recombination associated with haplotypes of Chinese pigs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Variations in recombination fraction (θ) among chromosomal regions, individuals and families have been observed and have an important impact on quantitative trait loci (QTL) mapping studies. Such variations on porcine chromosome X (SSC-X) and on other mammalian chromosome X are rarely explored. The emerging assembly of pig sequence provides exact physical location of many markers, facilitating the study of a fine-scale recombination landscape of the pig genome by comparing a clone-based physical map to a genetic map. Using large offspring of F<sub>1 </sub>females from two large-scale resource populations (Large White ♂ × Chinese Meishan ♀, and White Duroc ♂ × Chinese Erhualian ♀), we were able to evaluate the heterogeneity in θ for a specific interval among individual F<sub>1 </sub>females.</p> <p>Results</p> <p>Alignments between the cytogenetic map, radiation hybrid (RH) map, genetic maps and clone map of SSC-X with the physical map of human chromosome X (HSA-X) are presented. The most likely order of 60 markers on SSC-X is inferred. The average recombination rate across SSC-X is of ~1.27 cM/Mb. However, almost no recombination occurred in a large region of ~31 Mb extending from the centromere to Xq21, whereas in the surrounding regions and in the Xq telomeric region a recombination rate of 2.8-3.3 cM/Mb was observed, more than twice the chromosome-wide average rate. Significant differences in θ among F<sub>1 </sub>females within each population were observed for several chromosomal intervals. The largest variation was observed in both populations in the interval <it>UMNP71-SW1943</it>, or more precisely in the subinterval <it>UMNP891-UMNP93</it>. The individual variation in θ over this subinterval was found associated with F<sub>1 </sub>females' maternal haplotypes (Chinese pig haplotypes) and independent of paternal haplotype (European pig haplotypes). The θ between <it>UMNP891 </it>and <it>UMNP93 </it>for haplotype 1122 and 4311 differed by more than fourteen-fold (10.3% vs. 0.7%).</p> <p>Conclusions</p> <p>This study reveals marked regional, individual and haplotype-specific differences in recombination rate on SSC-X. Lack of recombination in such a large region makes it impossible to narrow QTL interval using traditional fine-mapping approaches. The relationship between recombination variation and haplotype polymorphism is shown for the first time in pigs.</p

    High resolution physical map of porcine chromosome 7 QTL region and comparative mapping of this region among vertebrate genomes

    Get PDF
    BACKGROUND: On porcine chromosome 7, the region surrounding the Major Histocompatibility Complex (MHC) contains several Quantitative Trait Loci (QTL) influencing many traits including growth, back fat thickness and carcass composition. Previous studies highlighted that a fragment of ~3.7 Mb is located within the Swine Leucocyte Antigen (SLA) complex. Internal rearrangements of this fragment were suggested, and partial contigs had been built, but further characterization of this region and identification of all human chromosomal fragments orthologous to this porcine fragment had to be carried out. RESULTS: A whole physical map of the region was constructed by integrating Radiation Hybrid (RH) mapping, BAC fingerprinting data of the INRA BAC library and anchoring BAC end sequences on the human genome. 17 genes and 2 reference microsatellites were ordered on the high resolution IMNpRH2(12000rad )Radiation Hybrid panel. A 1000:1 framework map covering 550 cR(12000 )was established and a complete contig of the region was developed. New micro rearrangements were highlighted between the porcine and human genomes. A bovine RH map was also developed in this region by mapping 16 genes. Comparison of the organization of this region in pig, cattle, human, mouse, dog and chicken genomes revealed that 1) the translocation of the fragment described previously is observed only on the bovine and porcine genomes and 2) the new internal micro rearrangements are specific of the porcine genome. CONCLUSION: We estimate that the region contains several rearrangements and covers 5.2 Mb of the porcine genome. The study of this complete BAC contig showed that human chromosomal fragments homologs of this heavily rearranged QTL region are all located in the region of HSA6 that surrounds the centromere. This work allows us to define a list of all candidate genes that could explain these QTL effects

    Detection of quantitative trait loci for carcass composition traits in pigs

    Get PDF
    A quantitative trait locus (QTL) analysis of carcass composition data from a three-generation experimental cross between Meishan (MS) and Large White (LW) pig breeds is presented. A total of 488 F2 males issued from six F1 boars and 23 F1 sows, the progeny of six LW boars and six MS sows, were slaughtered at approximately 80 kg live weight and were submitted to a standardised cutting of the carcass. Fifteen traits, i.e. dressing percentage, loin, ham, shoulder, belly, backfat, leaf fat, feet and head weights, two backfat thickness and one muscle depth measurements, ham + loin and back + leaf fat percentages and estimated carcass lean content were analysed. Animals were typed for a total of 137 markers covering the entire porcine genome. Analyses were performed using a line-cross (LC) regression method where founder lines were assumed to be fixed for different QTL alleles and a half/full sib (HFS) maximum likelihood method where allele substitution effects were estimated within each half-/full-sib family. Additional analyses were performed to search for multiple linked QTL and imprinting effects. Significant gene effects were evidenced for both leanness and fatness traits in the telomeric regions of SSC 1q and SSC 2p, on SSC 4, SSC 7 and SSC X. Additional significant QTL were identified for ham weight on SSC 5, for head weight on SSC 1 and SSC 7, for feet weight on SSC 7 and for dressing percentage on SSC X. LW alleles were associated with a higher lean content and a lower fat content of the carcass, except for the fatness trait on SSC 7. Suggestive evidence of linked QTL on SSC 7 and of imprinting effects on SSC 6, SSC 7, SSC 9 and SSC 17 were also obtained

    Progeny-testing of full-sibs IBD in a SSC2 QTL region highlights epistatic interactions for fatness traits in pigs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many QTL have been detected in pigs, but very few of them have been fine-mapped up to the causal mutation. On SSC2, the <it>IGF2</it>-intron3-G3072A mutation has been described as the causative polymorphism for a QTL underlying muscle mass and backfat deposition, but further studies have demonstrated that at least one additional QTL should segregate downstream of this mutation. A marker-assisted backcrossing design was set up in order to confirm the segregation of this second locus, reduce its confidence interval and better understand its mode of segregation.</p> <p>Results</p> <p>Five recombinant full-sibs, with genotype G/G at the <it>IGF2 </it>mutation, were progeny-tested. Only two of them displayed significant QTL for fatness traits although four inherited the same paternal and maternal chromosomes, thus exhibiting the same haplotypic contrast in the QTL region. The hypothesis of an interaction with another region in the genome was proposed to explain these discrepancies and after a genome scan, four different regions were retained as potential interacting regions with the SSC2 QTL. A candidate interacting region on SSC13 was confirmed by the analysis of an F2 pedigree, and in the backcross pedigree one haplotype in this region was found to mask the SSC2 QTL effect.</p> <p>Conclusions</p> <p>Assuming the hypothesis of interactions with other chromosomal regions, the QTL could be unambiguously mapped to a 30 cM region delimited by recombination points. The marker-assisted backcrossing design was successfully used to confirm the segregation of a QTL on SSC2 and, because full-sibs that inherited the same alleles from their two parents were analysed, the detection of epistatic interactions could be performed between alleles and not between breeds as usually done with the traditional Line-Cross model. Additional analyses of other recombinant sires should provide more information to further improve the fine-mapping of this locus, and confirm or deny the interaction identified between chromosomes 2 and 13.</p

    Detection of quantitative trait loci for reproduction and production traits in Large White and French Landrace pig populations (Open Access publication)

    Get PDF
    A genome-wide scan was performed in Large White and French Landrace pig populations in order to identify QTL affecting reproduction and production traits. The experiment was based on a granddaughter design, including five Large White and three French Landrace half-sib families identified in the French porcine national database. A total of 239 animals (166 sons and 73 daughters of the eight male founders) distributed in eight families were genotyped for 144 microsatellite markers. The design included 51 262 animals recorded for production traits, and 53 205 litter size records were considered. Three production and three reproduction traits were analysed: average backfat thickness (US_M) and live weight (LWGT) at the end of the on-farm test, age of candidates adjusted at 100 kg live weight, total number of piglets born per litter, and numbers of stillborn (STILLp) and born alive (LIVp) piglets per litter. Ten QTL with medium to large effects were detected at a chromosome-wide significance level of 5% affecting traits US_M (on SSC2, SSC3 and SSC17), LWGT (on SSC4), STILLp (on SSC6, SSC11 and SSC14) and LIVp (on SSC7, SSC16 and SSC18). The number of heterozygous male founders varied from 1 to 3 depending on the QTL

    Development and validation of high-density SNP array in ducks

    Get PDF
    Development and validation of high-density SNP array in ducks. XIth European symposium on poultry genetics (ESPG

    New investigations around CYP11A1 and its possible involvement in an androstenone QTL characterised in Large White pigs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previously, in boars with extreme androstenone levels, differential expression of the <it>CYP11A1 </it>gene in the testes has been characterised. <it>CYP11A1 </it>is located in a region where a QTL influencing boar fat androstenone levels has been detected in a Large White pig population. Clarifying the role of CYP11A1 in boar taint is important because it catalyses the initial step of androstenone synthesis and also of steroid synthesis.</p> <p>Results</p> <p>A genome-wide association study located <it>CYP11A1 </it>at approximately 1300 kb upstream from SNP H3GA0021967, defining the centre of the region containing the QTL for androstenone variation. In this study, we partially sequenced the <it>CYP11A1 </it>gene and identified several new single nucleotide polymorphisms (SNP) within it. Characterisation of one animal, heterozygous for <it>CYP11A1 </it>testicular expression but homozygous for a haplotype of a large region containing <it>CYP11A1</it>, revealed that variation of <it>CYP11A1 </it>expression is probably regulated by a mutation located downstream from the SNP H3GA0021967. We analysed <it>CYP11A1 </it>expression in LW families according to haplotypes of the QTL region's centre. Effects of haplotypes on <it>CYP11A1 </it>expression and on androstenone accumulation were not concordant.</p> <p>Conclusion</p> <p>This study shows that testicular expression of <it>CYP11A1 </it>is not solely responsible for the QTL influencing boar fat androstenone levels. As a conclusion, we propose to refute the hypothesis that a single mutation located near the centre of the QTL region could control androstenone accumulation in fat by regulating the <it>CYP11A1 </it>expression.</p

    Review. Divergent selection for residual feed intake in the growing pig

    Get PDF
    To view supplementary material for this article, please visit https:/doi.org/10.1017/S175173111600286XThis review summarizes the results from the INRA (Institut National de la Recherche Agronomique) divergent selection experiment on residual feed intake (RFI) in growing Large White pigs during nine generations of selection. It discusses the remaining challenges and perspectives for the improvement of feed efficiency in growing pigs. The impacts on growing pigs raised under standard conditions and in alternative situations such as heat stress, inflammatory challenges or lactation have been studied. After nine generations of selection, the divergent selection for RFI led to highly significant ( P<0.001) line differences for RFI (−165 g/day in the low RFI (LRFI) line compared with high RFI line) and daily feed intake (−270 g/day). Low responses wereobserved on growth rate (−12.8 g/day, P <0.05) and body composition (+0.9mm backfat thickness, P = 0.57; −2.64% lean meat content, P<0.001) with a marked response on feed conversion ratio (−0.32 kg feed/kg gain, P<0.001). Reduced ultimate pH and increased lightness of the meat ( P<0.001) were observed in LRFI pigs with minor impact on the sensory quality of the meat. These changes in meat quality were associated with changes of the muscular energy metabolism. Reduced maintenance energy requirements (−10% after five generations of selection) and activity (−21% of time standing after six generations of selection) of LRFI pigs greatly contributed to the gain in energy efficiency. However, the impact of selection for RFI on the protein metabolism of the pig remains unclear. Digestibility of energy and nutrients was not affected by selection, neither for pigs fed conventional diets nor for pigs fed high-fibre diets. A significant improvement of digestive efficiency could likely be achieved by selecting pigs on fibre diets. No convincing genetic or blood biomarker has been identified for explaining the differences in RFI, suggesting that pigs have various ways to achieve an efficient use of feed. No deleterious impact of the selection on the sow reproduction performance was observed. The resource allocation theory states that low RFI may reduce the ability to cope with stressors,via the reduction of a buffer compartment dedicated to responses to stress. None of the experiments focussed on the response of pigs to stress or challenges could confirm this theory. Understanding the relationships between RFI and responses to stress and energy demanding processes, as such immunity and lactation, remains a major challenge for a better understanding of the underlying biological mechanisms of the trait and to reconcile the experimental results with the resource allocation theory
    corecore