22 research outputs found

    A significant association between deltamethrin resistance, Plasmodium falciparum infection and the Vgsc-1014S resistance mutation in Anopheles gambiae highlights the epidemiological importance of resistance markers.

    Get PDF
    BACKGROUND The success of malaria vector control is threatened by widespread pyrethroid insecticide resistance. However, the extent to which insecticide resistance impacts transmission is unclear. The objective of this study was to examine the association between the DDT/pyrethroid knockdown resistance mutation Vgsc-1014S, commonly termed kdr, and infection with Plasmodium falciparum sporozoites in Anopheles gambiae. METHODS WHO standard methods were used to characterize susceptibility of wild female mosquitoes to 0.05 % deltamethrin. PCR-based molecular diagnostics were used to identify mosquitoes to species and to genotype at the Vgsc-L1014S locus. ELISAs were used to detect the presence of P. falciparum sporozoites and for blood meal identification. RESULTS Anopheles mosquitoes were resistant to deltamethrin with mortality rates of 77.7 % [95 % CI 74.9-80.3 %]. Of 545 mosquitoes genotyped 96.5 % were A. gambiae s.s. and 3.5 % were Anopheles arabiensis. The Vgsc-1014S mutation was detected in both species. Both species were predominantly anthropophagic. In A. gambiae s.s., Vgsc-L1014S genotype was significantly associated with deltamethrin resistance (χ2 = 11.2; p < 0.001). The P. falciparum sporozoite infection rate was 4.2 %. There was a significant association between the presence of sporozoites and Vgsc-L1014S genotype in A. gambiae s.s. (χ2 = 4.94; p = 0.026). CONCLUSIONS One marker, Vgsc-1014S, was associated with insecticide resistance and P. falciparum infection in wild-caught mixed aged populations of A. gambiae s.s. thereby showing how resistance may directly impact transmission

    Using sibship reconstructions to understand the relationship between larval habitat productivity and oviposition behaviour in Kenyan Anopheles arabiensis

    Get PDF
    Background Strategies for combatting residual malaria by targeting vectors outdoors are gaining importance as the limitations of primary indoor interventions are reached. Strategies to target ovipositing females or her offspring are broadly applicable because all mosquitoes require aquatic habitats for immature development irrespective of their biting or resting preferences. Oviposition site selection by gravid females is frequently studied by counting early instar larvae in habitats; an approach which is valid only if the number of larvae correlates with the number of females laying eggs. This hypothesis was tested against the alternative, that a higher abundance of larvae results from improved survival of a similar or fewer number of families. Methods In a controlled experiment, 20 outdoor artificial ponds were left uncovered for 4 days to allow oviposition by wild mosquitoes, then covered with netting and first and second instar larvae sampled daily. Natural Anopheles habitats of two different types were also identified, and all visible larvae sampled. All larvae were identified to species, and most samples of the predominant species, Anopheles arabiensis, were genotyped using microsatellites for sibling group reconstructions using two contrasting softwares, BAPS and COLONY. Results In the ponds, the number of families reconstructed by each software significantly predicted larval abundance (BAPS R2 = 0.318, p = 0.01; COLONY R2 = 0.476, p = 0.001), and suggested that around 50% of females spread larvae across multiple ponds (skip oviposition). From natural habitats, the mean family size again predicted larval abundance using BAPS (R2 = 0.829, p = 0.017) though not using COLONY (R2 = 0.218, p = 0.68), but both softwares once more suggested high rates of skip oviposition (in excess of 50%). Conclusion This study shows that, whether in closely-located artificial habitats or natural breeding sites, higher early instar larval densities result from more females laying eggs in these sites. These results provide empirical support for use of early instar larval abundance as an index for oviposition site preference. Furthermore, the sharing of habitats by multiple females and the high skip-oviposition rate in An. arabiensis suggest that larviciding by auto-dissemination of insecticide may be successful

    Presence of the knockdown resistance mutation, Vgsc-1014F in Anopheles gambiae and An. arabiensis in western Kenya

    Get PDF
    INTRODUCTION: The voltage gated sodium channel mutation Vgsc-1014S (kdr-east) was first reported in Kenya in 2000 and has since been observed to occur at high frequencies in the local Anopheles gambiae s.s. POPULATION: The mutation Vgsc-1014F has never been reported from An. gambiae Complex complex mosquitoes in Kenya. FINDINGS: Molecularly confirmed An. gambiae s.s. (hereafter An. gambiae) and An. arabiensis collected from 4 different parts of western Kenya were genotyped for kdr from 2011 to 2013. Vgsc-1014F was observed to have emerged, apparently, simultaneously in both An. gambiae and An. arabiensis in 2012. A portion of the samples were submitted for sequencing in order to confirm the Vgsc-1014F genotyping results. The resulting sequence data were deposited in GenBank (Accession numbers: KR867642-KR867651, KT758295-KT758303). A single Vgsc-1014F haplotype was observed suggesting, a common origin in both species. CONCLUSION: This is the first report of Vgsc-1014F in Kenya. Based on our samples, the mutation is present in low frequencies in both An. gambiae and An. arabiensis. It is important that we start monitoring relative frequencies of the two kdr genes so that we can determine their relative importance in an area of high insecticide treated net ownership

    Resistance to pirimiphos-methyl in West African Anopheles is spreading via duplication and introgression of the Ace1 locus

    Get PDF
    Vector population control using insecticides is a key element of current strategies to prevent malaria transmission in Africa. The introduction of effective insecticides, such as the organophosphate pirimiphos-methyl, is essential to overcome the recurrent emergence of resistance driven by the highly diverse Anopheles genomes. Here, we use a population genomic approach to investigate the basis of pirimiphos-methyl resistance in the major malaria vectors Anopheles gambiae and A. coluzzii. A combination of copy number variation and a single non-synonymous substitution in the acetylcholinesterase gene, Ace1, provides the key resistance diagnostic in an A. coluzzii population from Côte d’Ivoire that we used for sequence-based association mapping, with replication in other West African populations. The Ace1 substitution and duplications occur on a unique resistance haplotype that evolved in A. gambiae and introgressed into A. coluzzii, and is now common in West Africa primarily due to selection imposed by other organophosphate or carbamate insecticides. Our findings highlight the predictive value of this complex resistance haplotype for phenotypic resistance and clarify its evolutionary history, providing tools to for molecular surveillance of the current and future effectiveness of pirimiphos-methyl based interventions

    Correction to: Emergence of knock-down resistance in the Anopheles gambiae complex in the Upper River Region, The Gambia, and its relationship with malaria infection in children.

    Get PDF
    Unfortunately, the original article [1] contained an error mistakenly carried forward by the Production department handling this article whereby some figures and their captions were interchanged. The correct figures (Figs. 1, 2, 3, 4, 5) and captions are presented in this erratum. The original article has also been updated to reflect this correction

    A high throughput multi-locus insecticide resistance marker panel for tracking resistance emergence and spread in Anopheles gambiae

    Get PDF
    The spread of resistance to insecticides in disease-carrying mosquitoes poses a threat to the effectiveness of control programmes, which rely largely on insecticide-based interventions. Monitoring mosquito populations is essential, but obtaining phenotypic measurements of resistance is laborious and error-prone. High-throughput genotyping offers the prospect of quick and repeatable estimates of resistance, while also allowing resistance markers to be tracked and studied. To demonstrate the potential of highly-mulitplexed genotypic screening for measuring resistance-association of mutations and tracking their spread, we developed a panel of 28 known or putative resistance markers in the major malaria vector Anopheles gambiae, which we used to screen mosquitoes from a wide swathe of Sub-Saharan Africa (Burkina Faso, Ghana, Democratic Republic of Congo (DRC) and Kenya). We found resistance association in four markers, including a novel mutation in the detoxification gene Gste2 (Gste2-119V). We also identified a duplication in Gste2 combining a resistance-associated mutation with its wild-type counterpart, potentially alleviating the costs of resistance. Finally, we describe the distribution of the multiple origins of kdr resistance, finding unprecedented diversity in the DRC. This panel represents the first step towards a quantitative genotypic model of insecticide resistance that can be used to predict resistance status in An. gambiae

    Resistance to pirimiphos-methyl in West African Anopheles is spreading via duplication and introgression of the Ace1 locus

    Get PDF
    Publisher Copyright: © 2021 Grau-Bové et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Vector population control using insecticides is a key element of current strategies to prevent malaria transmission in Africa. The introduction of effective insecticides, such as the organophosphate pirimiphos-methyl, is essential to overcome the recurrent emergence of resistance driven by the highly diverse Anopheles genomes. Here, we use a population genomic approach to investigate the basis of pirimiphos-methyl resistance in the major malaria vectors Anopheles gambiae and A. coluzzii. A combination of copy number variation and a single non-synonymous substitution in the acetylcholinesterase gene, Ace1, provides the key resistance diagnostic in an A. coluzzii population from Côte d’Ivoire that we used for sequence-based association mapping, with replication in other West African populations. The Ace1 substitution and duplications occur on a unique resistance haplotype that evolved in A. gambiae and introgressed into A. coluzzii, and is now common in West Africa primarily due to selection imposed by other organophosphate or carbamate insecticides. Our findings highlight the predictive value of this complex resistance haplotype for phenotypic resistance and clarify its evolutionary history, providing tools to for molecular surveillance of the current and future effectiveness of pirimiphos-methyl based interventions.publishersversionpublishe

    Genome-wide association studies reveal novel loci associated with pyrethroid and organophosphate resistance in Anopheles gambiae

    Get PDF
    Resistance to insecticides in Anopheles mosquitoes threatens the effectiveness of malaria control, but the genetics of resistance are only partially understood. We performed a large scale multi-country genome-wide association study of resistance to two widely used insecticides: deltamethrin and pirimiphos-methyl, using sequencing data from An. gambiae and An. coluzzii from ten locations in West Africa. Resistance was highly multi-genic, multiallelic and variable between populations. While the strongest and most consistent association with deltamethrin resistance came from Cyp6aa1, this was based on several independent copy number variants (CNVs) in An. coluzzii, and on a non-CNV haplotype in An. gambiae. For pirimiphos-methyl, signals included Ace1, cytochrome P450s, glutathione S-transferases and the nAChR target site of neonicotinoid insecticides. The regions around Cyp9k1 and the Tep family of immune genes showed evidence of cross-resistance to both insecticides. These locally-varying, multi-allelic patterns highlight the challenges involved in genomic monitoring of resistance, and form the basis for improved surveillance methods

    Resistance to pirimiphos-methyl in West African Anopheles is spreading via duplication and introgression of the Ace1 locus

    Get PDF
    Vector population control using insecticides is a key element of current strategies to prevent malaria transmission in Africa. The introduction of effective insecticides, such as the organophosphate pirimiphos-methyl, is essential to overcome the recurrent emergence of resistance driven by the highly diverse Anopheles genomes. Here, we use a population genomic approach to investigate the basis of pirimiphos-methyl resistance in the major malaria vectors Anopheles gambiae and A. coluzzii. A combination of copy number variation and a single non-synonymous substitution in the acetylcholinesterase gene, Ace1, provides the key resistance diagnostic in an A. coluzzii population from Coˆte d’Ivoire that we used for sequence-based association mapping, with replication in other West African populations. The Ace1 substitution and duplications occur on a unique resistance haplotype that evolved in A. gambiae and introgressed into A. coluzzii, and is now common in West Africa primarily due to selection imposed by other organophosphate or carbamate insecticides. Our findings highlight the predictive value of this complex resistance haplotype for phenotypic resistance and clarify its evolutionary history, providing tools to for molecular surveillance of the current and future effectiveness of pirimiphos-methyl based interventions
    corecore