1,729 research outputs found

    Bound States in Sharply Bent Waveguides: Analytical and Experimental Approach

    Full text link
    Quantum wires and electromagnetic waveguides possess common features since their physics is described by the same wave equation. We exploit this analogy to investigate experimentally with microwave waveguides and theoretically with the help of an effective potential approach the occurrence of bound states in sharply bent quantum wires. In particular, we compute the bound states, study the features of the transition from a bound to an unbound state caused by the variation of the bending angle and determine the critical bending angles at which such a transition takes place. The predictions are confirmed by calculations based on a conventional numerical method as well as experimental measurements of the spectra and electric field intensity distributions of electromagnetic waveguides

    Genome sequence of the Bacteroides fragilis phage ATCC 51477-B1

    Get PDF
    The genome of a fecal pollution indicator phage, Bacteroides fragilis ATCC 51477-B1, was sequenced and consisted of 44,929 bases with a G+C content of 38.7%. Forty-six putative open reading frames were identified and genes were organized into functional clusters for host specificity, lysis, replication and regulation, and packaging and structural proteins

    Graduate Medical Education on the Frontlines during the COVID-19 Pandemic in New York City- A Response to Promote Well-being

    Get PDF
    Introduction: The COVID-19 pandemic has driven many health care institutions in the United States beyond their capacity. Physicians-in-training in graduate medical education programs have suffered the strain of providing patient care during this unprecedented time of crisis. The significant prevalence of pre-existing resident and fellow burnout and depression makes the need for action by institutions to support the well-being of residents and fellows even more urgent. We aim to describe innovative adaptations our Office of Graduate Medical Education implemented with the support of institutional leadership as responses to promote the well-being of residents and fellows on the frontlines during the COVID-19 pandemic. Methods: The Office of Graduate Medical Education (GME), in collaboration with the Office of Well-being and Resilience, developed a set of resources and interventions to support trainees during the pandemic based on four major categories: workplace culture, personal factors and health, mental health support, and workplace efficiency and function. Examination of the capacity of existing services and gaps that needed to be filled in the rapidly evolving early days of the COVID pandemic led to a robust growth in resources. For example, the already established Student and Trainee Mental Health program was able to expand and adapt its role to serve trainee needs more effectively. Results: We expanded resources to target trainee well-being across a broad array of domains within a short time frame. With investment in access to the Student and Trainee Mental Health program, utilization increased by 25.7%, with 1,231 more visits in 2020 compared to the number of visits in 2019, prior to the COVID-19 pandemic. The creation of Recharge Rooms had a positive impact on the well-being of health care workers. After a single fifteen-minute experience in the Recharge Room, an average 59.6% reduction in self-reported stress levels was noted by users. Other interventions were noted to be helpful in regular town hall meetings with trainees. Conclusion: Addressing trainee well-being is an essential aspect of a crisis response. The Mount Sinai Health System was able to care for the physical, mental, psychosocial, and safety needs of our trainees thanks to the collaborative effort of a pre-existing institutional well-being program and the GME Office. The ability to implement such a response was enabled by our well-being foundation, which allowed leadership at the highest institutional level and the Office of GME to provide support in response to this unprecedented crisis

    Stable Isotope Phosphate Labelling of Diverse Metabolites is Enabled by a Family of O-18-Phosphoramidites**

    Get PDF
    A family of 18O2-phosphoramidites facilitates synthetic access on gram-scale to various isotopically pure 18O-labelled phosphate products, like nucleotides, inositol phosphates, polyphosphates, and DNA. The utility of these 18O-natural products is underlined in the assignment of various metabolites from biological matrices using capillary electrophoresis electrospray ionisation triple quadrupole mass spectrometry. Stable isotope labelling is state-of-the-art in quantitative mass spectrometry, yet often accessing the required standards is cumbersome and very expensive. Here, a unifying synthetic concept for 18O-labelled phosphates is presented, based on a family of modified 18O2-phosphoramidite reagents. This toolbox offers access to major classes of biologically highly relevant phosphorylated metabolites as their isotopologues including nucleotides, inositol phosphates, -pyrophosphates, and inorganic polyphosphates. 18O-enrichment ratios >95 % and good yields are obtained consistently in gram-scale reactions, while enabling late-stage labelling. We demonstrate the utility of the 18O-labelled inositol phosphates and pyrophosphates by assignment of these metabolites from different biological matrices. We demonstrate that phosphate neutral loss is negligible in an analytical setup employing capillary electrophoresis electrospray ionisation triple quadrupole mass spectrometry

    Uakitite, VN, a new mononitride mineral from uakit iron meteorite (IIAB)

    Get PDF
    Uakitite was observed in small troilite–daubréelite (±schreibersite) inclusions (up to 100 µm) and in large troilite–daubréelite nodules (up to 1 cm) in Fe-Ni-metal (kamacite) of the Uakit iron meteorite (IIAB), Republic of Buryatia, Russia. Such associations in the Uakit meteorite seemed to form due to high-temperature (>1000 °C) separation of Fe-Cr-rich sulfide liquid from Fe-metal melt. Most inclusions represent alternation of layers of troilite and daubréelite, which may be a result of solid decay of an initial Fe-Cr-sulfide. These inclusions are partially resorbed and mainly located in fissures of the meteorite, which is now filled with magnetite, and rarely other secondary minerals. Phase relations indicate that uakitite is one of the early minerals in these associations. It forms isometric (cubic) crystals (in daubréelite) or rounded grains (in schreibersite). The size of uakitite grains is usually less than 5 µm. It is associated with sulfides (daubréelite, troilite, grokhovskyite), schreibersite and magnetite. Carlsbergite CrN, a more abundant nitride in the Uakit meteorite, was not found in any assemblages with uakitite. Physical and optical properties of uakitite are quite similar to synthetic VN: yellow and transparent phase with metallic luster; Mohs hardness: 9–10; light gray color with a pinky tint in reflected light; density (calc.) = 6.128 g/cm3. Uakitite is structurally related to the osbornite group minerals: carlsbergite CrN and osbornite TiN. Structural data were obtained for three uakitite crystals using the electron backscatter diffraction (EBSD) technique. Fitting of the EBSD patterns for a synthetic VN model (cubic, Fm-3m, a = 4.1328(3) Å; V = 70.588(9) Å3; Z = 4) resulted in the parameter MAD = 0.14–0.37° (best-good fit). Analytical data for uakitite (n = 54, in wt. %) are: V, 71.33; Cr, 5.58; Fe, 1.56; N, 21.41; Ti, below detection limit (<0.005). The empirical formula (V0.91Cr0.07Fe0.02)1.00N1.00 indicates that chromium incorporates in the structure according to the scheme V3+ → Cr3+ (up to 7 mol. % of the carlsbergite end-member). © 2020 by the authors. Licensee MDPI, Basel, Switzerland.Russian Foundation for Basic Research, RFBR: 17-05-00129, IGM SD 0330-2016-0005Government Council on Grants, Russian FederationMinistry of Science and Higher Education of the Russian FederationFunding: The investigations were partly supported by RFBR (grant 17-05-00129) and the State assignment project (IGM SD 0330-2016-0005). This work was also supported by the Initiative Project of Ministry of Science and Higher Education of the Russian Federation and by Act 211 of the Government of the Russian Federation, agreement no. 02.A03.21.0006

    Four Phosphates at One Blow: Access to Pentaphosphorylated Magic Spot Nucleotides and Their Analysis by Capillary Electrophoresis

    Get PDF
    The complex phosphorylation pattern of natural and modified pentaphosphorylated magic spot nucleotides is generated in a highly efficient way. A cyclic pyrophosphoryl phosphoramidite (cPyPA) reagent is used to introduce four phosphates on nucleosides regioselectively in a one-flask key transformation. The obtained magic spot nucleotides are used to develop a capillary electrophoresis UV detection method, enabling nucleotide assignment in complex bacterial extracts

    PeroxisomeDB: a database for the peroxisomal proteome, functional genomics and disease

    Get PDF
    Peroxisomes are essential organelles of eukaryotic origin, ubiquitously distributed in cells and organisms, playing key roles in lipid and antioxidant metabolism. Loss or malfunction of peroxisomes causes more than 20 fatal inherited conditions. We have created a peroxisomal database () that includes the complete peroxisomal proteome of Homo sapiens and Saccharomyces cerevisiae, by gathering, updating and integrating the available genetic and functional information on peroxisomal genes. PeroxisomeDB is structured in interrelated sections ‘Genes’, ‘Functions’, ‘Metabolic pathways’ and ‘Diseases’, that include hyperlinks to selected features of NCBI, ENSEMBL and UCSC databases. We have designed graphical depictions of the main peroxisomal metabolic routes and have included updated flow charts for diagnosis. Precomputed BLAST, PSI-BLAST, multiple sequence alignment (MUSCLE) and phylogenetic trees are provided to assist in direct multispecies comparison to study evolutionary conserved functions and pathways. Highlights of the PeroxisomeDB include new tools developed for facilitating (i) identification of novel peroxisomal proteins, by means of identifying proteins carrying peroxisome targeting signal (PTS) motifs, (ii) detection of peroxisomes in silico, particularly useful for screening the deluge of newly sequenced genomes. PeroxisomeDB should contribute to the systematic characterization of the peroxisomal proteome and facilitate system biology approaches on the organelle

    Assessment of the comagmaticity of gabbroids and syenites of the Arsentyevsky massif (Western Transbaikalia)

    Get PDF
    Object . The results of geochronological and isotope-geochemical studies of the Arsentyevsky titaniferous gabbro-syenite massif of the Western Transbaikalia, which previously referred to the gabbro-syenite series of a two-phase structure are presented. The rocks of the massif contain an increased concentration of titanomagnetite, ilmenite, magnetite and in some cases apatite and are considered as complex iron-titanium ores. Methods. The studies were performed by silicate analysis me­thods, XRF and ICP-MS; age determination for zircons was carried out by LA-ICP-MS and SHRIMP-II methods. The composition of minerals on the X-ray microarray analyzer MAP-3 and electron microscope LEO-1430 was studied. Results. In the basites, a standard trend is observed for the evolution of compositions from melanocratic to terminal leucocratic differen­ces with an increase in the content of silica, alumina, and sodium, and a decrease in magnesium and calcium. Syenites differ from anorthosites in the content of impurity elements including rubidium, niobium, strontium and REE The geochronological studies of rocks of Arsent’evsky gabbro-syenite massif, showed a significant time gap in the formation of gabbroids rela­tive to syenites. The U-Pb age of the gabbroids was 279.5 ± 2.0 Ma, alkali feldspar syenites have age 229.4 ± 2.8 Ma, and biotite syenites - 226 ± 2.4 Ma. Conclusion. The obtained results by age and data on the geochemical features of the rocks made it possible to conclude that there was no genetic relationship between basites and syenites. Petrochemical and geochemical features of biotite and alkali-feldspar syenites proved to be close to the rocks of the Mesozoic Kunaleisky complex
    corecore