88 research outputs found

    Autoimmune rheumatic disease IgG has differential effects upon neutrophil integrin activation that is modulated by the endothelium

    Get PDF
    The importance of neutrophils in the pathogenesis of autoimmune rheumatic diseases, such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA), is increasingly recognised. Generation of reactive oxygen species (ROS) and release of neutrophil extracellular traps (NETs) by activated neutrophils are both thought to contribute to pathology; although the underlying mechanisms, particularly the effects of IgG autoantibodies upon neutrophil function, are not fully understood. Therefore, we determined whether purified IgG from patients with SLE or RA have differential effects upon neutrophil activation and function. We found that SLE- and RA-IgG both bound human neutrophils but differentially regulated neutrophil function. RA- and SLE-IgG both increased PMA-induced β1 integrin-mediated adhesion to fibronectin, whilst only SLE-IgG enhanced αMβ2 integrin-mediated adhesion to fibrinogen. Interestingly, only SLE-IgG modulated neutrophil adhesion to endothelial cells. Both SLE- and RA-IgG increased ROS generation and DNA externalisation by unstimulated neutrophils. Only SLE-IgG however, drove DNA externalisation following neutrophil activation. Co-culture of neutrophils with resting endothelium prevented IgG-mediated increase of extracellular DNA, but this inhibition was overcome for SLE-IgG when the endothelium was stimulated with TNF-α. This differential pattern of neutrophil activation has implications for understanding SLE and RA pathogenesis and may highlight avenues for development of novel therapeutic strategies

    Identification of a Novel HIF-1α-α_{M}β_{2} Integrin-NET Axis in Fibrotic Interstitial Lung Disease

    Get PDF
    Neutrophilic inflammation correlates with mortality in fibrotic interstitial lung disease (ILD) particularly in the most severe form, idiopathic pulmonary fibrosis (IPF), although the underlying mechanisms remain unclear. Neutrophil function is modulated by numerous factors, including integrin activation, inflammatory cytokines and hypoxia. Hypoxia has an important role in inflammation and may also contribute to pulmonary disease. We aimed to determine how neutrophil activation occurs in ILD and the relative importance of hypoxia. Using lung biopsies and bronchoalveolar lavage (BAL) fluid from ILD patients we investigated the extent of hypoxia and neutrophil activation in ILD lungs. Then we used ex vivo neutrophils isolated from healthy volunteers and BAL from patients with ILD and non-ILD controls to further investigate aberrant neutrophil activation in hypoxia and ILD. We demonstrate for the first time using intracellular staining, HIF-1α stabilization in neutrophils and endothelial cells in ILD lung biopsies. Hypoxia enhanced both spontaneous (+1.31-fold, p < 0.05) and phorbol 12-myristate 13-acetate (PMA)-induced (+1.65-fold, p < 0.001) neutrophil extracellular trap (NET) release, neutrophil adhesion (+8.8-fold, <0.05), and trans-endothelial migration (+1.9-fold, p < 0.05). Hypoxia also increased neutrophil expression of the αM (+3.1-fold, p < 0.001) and αX (+1.6-fold, p < 0.01) integrin subunits. Interestingly, NET formation was induced by αMβ2 integrin activation and prevented by cation chelation. Finally, we observed NET-like structures in IPF lung sections and in the BAL from ILD patients, and quantification showed increased cell-free DNA content (+5.5-fold, p < 0.01) and MPO-citrullinated histone H3 complexes (+21.9-fold, p < 0.01) in BAL from ILD patients compared to non-ILD controls. In conclusion, HIF-1α upregulation may augment neutrophil recruitment and activation within the lung interstitium through activation of β2 integrins. Our results identify a novel HIF-1α- αMβ2 integrin axis in NET formation for future exploration in therapeutic approaches to fibrotic ILD

    Purified IgG from patients with obstetric but not IgG from non-obstetric antiphospholipid syndrome inhibit trophoblast invasion

    Get PDF
    Some patients with antiphospholipid syndrome (APS) suffer pregnancy morbidity (PM) but not vascular thrombosis (VT), whilst others suffer VT only. Therefore, we compared the effects of IgG from VT+/PM- and VT-/PM+ subjects on human first-trimester trophoblast (HTR8) cells

    Antiphospholipid antibody levels in early systemic lupus erythematosus: are they associated with subsequent mortality and vascular events?

    Get PDF
    OBJECTIVES: aPL are present in between 20 and 30% of patients with SLE. They can cause vascular events (VE) or pregnancy morbidity. aCL and anti-beta-2-glycoprotein I (anti-β2GPI) are measured in clinical practice. Domain I (DI) of β2GPI is the main site for aPL binding. We investigated the prevalence of IgG anti-DI, aCL and anti-β2GPI antibodies in early SLE and their association with mortality and development of VE. METHODS: Samples from 501 patients with SLE that had been obtained and stored early during their disease were tested for IgG anti-DI, aCL and anti-β2GPI antibodies by ELISA. LA status and history of VE were obtained by reviewing medical records. Kaplan-Meier analysis was used to investigate mortality and occurrence of VE, comparing groups with and without aPL in early disease. RESULTS: Of 501 patients, 190 (38%) had at least one of these aPL, of whom 112 had anti-DI alone. Of 276 patients with complete vascular history, 83 had experienced VE. The 39 patients who were double or triple-ELISA-positive for any combination of the three aPL were more likely to have or develop lupus anticoagulant (P<0.0001) than those who were single-ELISA-positive or negative. In Kaplan-Meier analysis, they showed a trend towards developing more VE (P = 0.06). CONCLUSION: IgG anti-DI antibodies were present in early serum samples from 29% of patients and were more common than IgG aCL or anti-β2GPI. There was some evidence suggesting that double or triple-ELISA-positivity for these antibodies identified a group with worse outcomes

    Antiphospholipid Antibodies to Domain I of Beta-2-Glycoprotein I Show Different Subclass Predominance in Comparison to Antibodies to Whole Beta-2-glycoprotein I

    Get PDF
    Antiphospholipid antibodies (aPL), the serological hallmark of antiphospholipid syndrome (APS), are a heterogeneous group of autoantibodies raised against circulating blood proteins. Of these proteins, the phospholipid-binding b2-glycoprotein I (β2GPI) is considered to be the main autoantigen in APS. Indeed, IgG antibodies targeting b2GPI (ab2GPI) directly cause both thrombosis and pregnancy morbidity in several mouse models. While antibodies raised against all five domains of b2GPI have been reported, a subgroup of IgG ab2GPI raised against the first domain (DI) of b2GPI (aDI), strongly correlate with thrombotic APS, and drive thrombosis and pregnancy loss in vivo. Few studies have focused on determining the type of IgG subclass(es) for aPL. The subclass of an antibody is important as this dictates the potential activity of an antibody; for example, IgG1 and IgG3 can fix complement better and are able to cross the placenta compared to IgG2 and IgG4. It is unknown what subclass IgG aDI are, and whether they are the same as ab2GPI. To determine IgG subclass distribution for ab2GPI and aDI, we purified total IgG from the serum of 19 APS patients with known ab2GPI and aDI activity. Using subclass-specific conjugated antibodies, we modified our established in-house ab2GPI and aDI ELISAs to individually measure IgG1, IgG2, IgG3, and IgG4. We found that while IgG1, IgG2, and IgG3 ab2GPI levels were similar, a marked difference was seen in IgG subclass aDI levels. Specifically, significantly higher levels of IgG3 aDI were detected compared to IgG1, IgG2, or IgG4 (p < 0.05 for all comparisons). Correlation analysis of subclass-specific ab2GPI vs. aDI demonstrated that IgG3 showed the weakest correlation (r = 0.45, p = 0.0023) compared to IgG1 (r = 0.61, p = 0.0001) and IgG2 (r = 0.81, p = 0.0001). Importantly, total subclass levels in IgG purified from APS and healthy serum (n = 10 HC n = 12 APS) did not differ, suggesting that the increased IgG3 aDI signal seen in APS-derived IgG is antigen-specific. To conclude, our data suggests that aDI show a different McDonnell et al. Subclass Differences Between aβ2GPI and aDI in APS IgG subclass distribution to ab2GPI. Our results highlight the importance of aDI testing for patient stratification and may point toward differential underlying aPL-driven pathogenic processes that may be subclass restricted

    Identification of a novel HIF-1α-αMβ2 integrin-NETosis axis in fibrotic interstitial lung disease

    Get PDF
    Neutrophilic inflammation correlates with mortality in fibrotic interstitial lung disease (ILD) particularly in the most severe form, idiopathic pulmonary fibrosis (IPF), although the underlying mechanisms remain unclear. Neutrophil function is modulated by numerous factors, including integrin activation, inflammatory cytokines and hypoxia. Hypoxia has an important role in inflammation and may also contribute to pulmonary disease. We aimed to determine how neutrophil activation occurs in ILD and the relative importance of hypoxia. Using lung biopsies and bronchoalveolar lavage (BAL) fluid from ILD patients we investigated the extent of hypoxia and neutrophil activation in ILD lungs. Then we used ex vivo neutrophils isolated from healthy volunteers and BAL from patients with ILD and non-ILD controls to further investigate aberrant neutrophil activation in hypoxia and ILD. We demonstrate for the first time using intracellular staining, HIF-1α stabilization in neutrophils and endothelial cells in ILD lung biopsies. Hypoxia enhanced both spontaneous (+1.31-fold, p < 0.05) and phorbol 12-myristate 13-acetate (PMA)-induced (+1.65-fold, p < 0.001) neutrophil extracellular trap (NET) release, neutrophil adhesion (+8.8-fold, <0.05), and trans-endothelial migration (+1.9-fold, p < 0.05). Hypoxia also increased neutrophil expression of the αM (+3.1-fold, p < 0.001) and αX (+1.6-fold, p < 0.01) integrin subunits. Interestingly, NET formation was induced by αMβ2 integrin activation and prevented by cation chelation. Finally, we observed NET-like structures in IPF lung sections and in the BAL from ILD patients, and quantification showed increased cell-free DNA content (+5.5-fold, p < 0.01) and MPO-citrullinated histone H3 complexes (+21.9-fold, p < 0.01) in BAL from ILD patients compared to non-ILD controls. In conclusion, HIF-1α upregulation may augment neutrophil recruitment and activation within the lung interstitium through activation of β2 integrins. Our results identify a novel HIF-1α- αMβ2 integrin axis in NET formation for future exploration in therapeutic approaches to fibrotic ILD

    Targeted Overexpression of Osteoactivin in Cells of Osteoclastic Lineage Promotes Osteoclastic Resorption and Bone Loss in Mice

    Get PDF
    This study sought to test whether targeted overexpression of osteoactivin (OA) in cells of osteoclastic lineage, using the tartrate-resistant acid phosphase (TRAP) exon 1B/C promoter to drive OA expression, would increase bone resorption and bone loss in vivo. OA transgenic osteoclasts showed ∼2-fold increases in OA mRNA and proteins compared wild-type (WT) osteoclasts. However, the OA expression in transgenic osteoblasts was not different. At 4, 8, and 15.3 week-old, transgenic mice showed significant bone loss determined by pQCT and confirmed by μ-CT. In vitro, transgenic osteoclasts were twice as large, had twice as much TRAP activity, resorbed twice as much bone matrix, and expressed twice as much osteoclastic genes (MMP9, calciton receptor, and ADAM12), as WT osteoclasts. The siRNA-mediated suppression of OA expression in RAW264.7-derived osteoclasts reduced cell size and osteoclastic gene expression. Bone histomorphometry revealed that transgenic mice had more osteoclasts and osteoclast surface. Plasma c-telopeptide (a resorption biomarker) measurements confirmed an increase in bone resorption in transgenic mice in vivo. In contrast, histomorphometric bone formation parameters and plasma levels of bone formation biomarkers (osteocalcin and pro-collagen type I N-terminal peptide) were not different between transgenic mice and WT littermates, indicating the lack of bone formation effects. In conclusion, this study provides compelling in vivo evidence that osteoclast-derived OA is a novel stimulator of osteoclast activity and bone resorption

    PEGylated Domain I of Beta-2-Glycoprotein I Inhibits the Binding, Coagulopathic, and Thrombogenic Properties of IgG From Patients With the Antiphospholipid Syndrome

    Get PDF
    APS is an autoimmune disease in which antiphospholipid antibodies (aPL) cause vascular thrombosis and pregnancy morbidity. In patients with APS, aPL exert pathogenic actions by binding serum beta-2-glycoprotein I (β2GPI) via its N-terminal domain I (DI). We previously showed that bacterially-expressed recombinant DI inhibits biological actions of IgG derived from serum of patients with APS (APS-IgG). DI is too small (7 kDa) to be a viable therapeutic agent. Addition of polyethylene glycol (PEGylation) to small molecules enhances the serum half-life, reduces proteolytic targeting and can decrease immunogenicity. It is a common method of tailoring pharmacokinetic parameters and has been used in the production of many therapies in the clinic. However, PEGylation of molecules may reduce their biological activity, and the size of the PEG group can alter the balance between activity and half-life extension. Here we achieve production of site-specific PEGylation of recombinant DI (PEG-DI) and describe the activities in vitro and in vivo of three variants with different size PEG groups. All variants were able to inhibit APS-IgG from: binding to whole β2GPI in ELISA, altering the clotting properties of human plasma and promoting thrombosis and tissue factor expression in mice. These findings provide an important step on the path to developing DI into a first-in-class therapeutic in APS

    Theory of Multidimensional Solitons

    Full text link
    We review a number of topics germane to higher-dimensional solitons in Bose-Einstein condensates. For dark solitons, we discuss dark band and planar solitons; ring dark solitons and spherical shell solitons; solitary waves in restricted geometries; vortex rings and rarefaction pulses; and multi-component Bose-Einstein condensates. For bright solitons, we discuss instability, stability, and metastability; bright soliton engineering, including pulsed atom lasers; solitons in a thermal bath; soliton-soliton interactions; and bright ring solitons and quantum vortices. A thorough reference list is included.Comment: review paper, to appear as Chapter 5a in "Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment," edited by P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonzalez (Springer-Verlag
    • …
    corecore