2,660 research outputs found
Correlated hopping of bosonic atoms induced by optical lattices
In this work we analyze a particular setup with ultracold atoms trapped in
state-dependent lattices. We show that any asymmetry in the contact interaction
translates into one of two classes of correlated hopping. After deriving the
effective lattice Hamiltonian for the atoms, we obtain analytically and
numerically the different phases and quantum phase transitions. We find for
weak correlated hopping both Mott insulators and charge density waves, while
for stronger correlated hopping the system transitions into a pair superfluid.
We demonstrate that this phase exists for a wide range of interaction
asymmetries and has interesting correlation properties that differentiate it
from an ordinary atomic Bose-Einstein condensate.Comment: 24 pages with 9 figures, to appear in New Journal of Physic
Quantum computation with cold bosonic atoms in an optical lattice
We analyse an implementation of a quantum computer using bosonic atoms in an
optical lattice. We show that, even though the number of atoms per site and the
tunneling rate between neighbouring sites is unknown, one may perform a
universal set of gates by means of adiabatic passage
Can culture be solely inferred from the absence of genetic or environmental factors ?
Rendell & Whitehead's minimalist definition of culture does not allow for the important gaps between cetaceans and Inimans. A more complete analysis reveals important discontinuities that may be more instnictive
for comparative purposes than the continuities emphasized by the authors
Detecting ground state qubit self-excitations in circuit QED: slow quantum anti-Zeno effect
In this work we study an ultrastrong coupled qubit-cavity system subjected to
slow repeated measurements. We demonstrate that even under a few imperfect
measurements it is possible to detect transitions of the qubit from its free
ground state to the excited state. The excitation probability grows
exponentially fast in analogy with the quantum anti-Zeno effect. The dynamics
and physics described in this paper is accessible to current superconducting
circuit technology.Comment: 6 pages, 6 figures. v2: extended published versio
Quantum computation with unknown parameters
We show how it is possible to realize quantum computations on a system in
which most of the parameters are practically unknown. We illustrate our results
with a novel implementation of a quantum computer by means of bosonic atoms in
an optical lattice. In particular we show how a universal set of gates can be
carried out even if the number of atoms per site is uncertain.Comment: 3 figure
Hall response of interacting bosonic atoms in strong gauge fields: from condensed to FQH states
Interacting bosonic atoms under strong gauge fields undergo a series of phase
transitions that take the cloud from a simple Bose-Einstein condensate all the
way to a family of fractional-quantum-Hall-type states [M. Popp, B. Paredes,
and J. I. Cirac, Phys. Rev. A 70, 053612 (2004)]. In this work we demonstrate
that the Hall response of the atoms can be used to locate the phase transitions
and characterize the ground state of the many-body state. Moreover, the same
response function reveals within some regions of the parameter space, the
structure of the spectrum and the allowed transitions to excited states. We
verify numerically these ideas using exact diagonalization for a small number
of atoms, and provide an experimental protocol to implement the gauge fields
and probe the linear response using a periodically driven optical lattice.
Finally, we discuss our theoretical results in relation to recent experiments
with condensates in artificial magnetic fields [ L. J. LeBlanc, K.
Jimenez-Garcia, R. A. Williams, M. C. Beeler, A. R. Perry, W. D. Phillips, and
I. B. Spielman, Proc. Natl. Acad. Sci. USA 109, 10811 (2012)] and we analyze
the role played by vortex states in the Hall response.Comment: 10 pages, 7 figure
- …