3 research outputs found

    To burn or not to burn: Comparing reintroducing fire with cutting an encroaching conifer for conservation of an imperiled shrub‐steppe

    Get PDF
    Woody vegetation has increased on rangelands worldwide for the past 100– 200 years, often because of reduced fire frequency. However, there is a general aversion to reintroducing fire, and therefore, fire surrogates are often used in its place to reverse woody plant encroachment. Determining the conservation effectiveness of reintroducing fire compared with fire surrogates over different time scales is needed to improve conservation efforts. We evaluated the conservation effectiveness of reintroducing fire with a fire surrogate (cutting) applied over the last ~30 years to control juniper (Juniperus occidentalis Hook.) encroachment on 77 sagebrush‐steppe sites. Critical to conservation of this imperiled ecosystem is to limit juniper, not encourage exotic annual grasses, and promote sagebrush dominance of the overstory. Reintroducing fire was more effective than cutting at reducing juniper abundance and extending the period of time that juniper was not dominating the plant community. Sagebrush was reduced more with burning than cutting. Sagebrush, however, was predicted to be a substantial component of the overstory longer in burned than cut areas because of more effective juniper control. Variation in exotic annual grass cover was explained by environmental variables and perennial grass abundance, but not treatment, with annual grasses being problematic on hotter and drier sites with less perennial grass. This suggests that ecological memory varies along an environmental gradient. Reintroducing fire was more effective than cutting at conserving sagebrush‐steppe encroached by juniper over extended time frames; however, cutting was more effective for short‐term conservation. This suggests fire and fire surrogates both have critical roles in conservation of imperiled ecosystems

    Data from: To burn or not to burn: comparing re-introducing fire with cutting an encroaching conifer for conservation of an imperiled shrub-steppe

    No full text
    Woody vegetation has increased on rangelands worldwide for the past 100-200 years, often because of reduced fire frequency. However, there is a general aversion to re-introducing fire and therefore, fire-surrogates are often used in its place to reverse woody plant encroachment. Determining the conservation effectiveness of re-introducing fire compared to fire-surrogates over different time scales is needed to improve conservation efforts. We evaluated the conservation effectiveness of re-introducing fire with a fire-surrogate (cutting) applied over the last ~30 years to control juniper (Juniperus occidentalis Hook.) encroachment on 77 sagebrush-steppe sites. Critical to conservation of this imperiled ecosystem is to limit juniper, not encourage exotic annual grasses, and promote sagebrush dominance of the overstory. Re-introducing fire was more effective than cutting at reducing juniper abundance and extending the period of time that juniper was not dominating the plant community. Sagebrush was reduced more with burning than cutting. Sagebrush, however, was predicted to be a substantial component of the overstory longer in burned than cut areas because of more effective juniper control. Variation in exotic annual grass cover was explained by environmental variables and perennial grass abundance, but not treatment, with annual grasses being problematic on hotter and drier sites with less perennial grass. This suggests that ecological memory varies along an environmental gradient. Re-introducing fire was more effective than cutting at conserving sagebrush-steppe encroached by juniper over extended time-frames; however, cutting was more effective for short-term conservation. This suggests fire and fire-surrogates both have critical roles in conservation of imperiled ecosystems

    \u3ci\u3eDrosophila\u3c/i\u3e Muller F Elements Maintain a Distinct Set of Genomic Properties Over 40 Million Years of Evolution

    Get PDF
    The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25–50%) than euchromatic reference regions (3–11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11–27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4–3.6 vs. 8.4–8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu
    corecore